Modern Computer Algebra

701 i 31 8

- L - L3 - .

Modern Computer Algebra

JOACHIM VON ZUR GATHEN
and
JURGEN GERHARD

Universitit Paderbom

CAMBRIDGE

UNIVERSITY PRESS

Sl N VA A A

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing
agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published 1999

© Cambridgé University Press 1999

British Library cataloguing in publication data available
ISBN 0521 64176 4 hardback

This edition of Modern Computer Algebra by J.von zur
Gathen and J.Gerhard is published by arrangement with the
Syndicate of the Press of University of Cambridge,
Cambridge, England.

Licensed edition for sale in the People’s Republic of China
only. Not for export elsewhere.

G LI vlquﬁ\jgi;zJTd 5;21‘;5,&_-,‘
The Holy Qur<an (732)

Les bons éleves font la gloire du mattre.?
Joseph Liouville {1846)

Je prie les lecteurs de n’ajouter point du tout de foi
a tout ce qu’ils trouveront ici écrit, mais seulement de I"examiner
et n’en recevoir que ce que la force et I'évidence de la raison
les pourra contraindre de croire.?
René Descartes (1647)

The subject is full of pitfalls. I have pointed out
some mistakes made by others, but have no doubt
that I have made new ones. [t may be expected that any errors
will be discovered and eliminated in due course.
Francis Sowerby Macaulay (1916)

Wherfore I trust thei that be learned, and happen to reade
this worke, wil beare the moare with me, if thei finde any thyng,
that thei doe mislike: Wherein if thei will use this curtesie,
either by writynge to admonishe me thereof, either
theim selfes to sette forthe a moare perfecter woorke,

I will thynke them praise worthie.

Robert Recorde (1557)

“There is a theory which states that if ever anyone discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.
Douglas Adams (1980)

! There is nothing hidden in heaven or on earth that is not in a clear book.

2 Good students are the teacher’s glory.
3 1 ask the readers to put no faith at all in anything they find written here, but just to examine it and to accept

only whatever the strength and evidence of reason may oblige them to believe.

Contents

Introduction

1 Cyclohexane, cryptography, codes, and computer algebra
1.1 Cyclohexane conformations
1.2 The RSA cryptosysterm
1.3 Distributed data structures
1.4 Computer algebrasystems

I Euclid

2 Fundamental algorithms
2.1 Representation and additionof numbers

2.2 Representation and addition of polynomials
2.3 Multiplication Lo e
2.4 Divisionwithremainder o o000
NOtES e e e e e e e ‘
EXEICiSes v o v v v e e e e e e e e e e e

3 The Euclidean Algorithm
3.1 Euclideandomains o
3.2 The Extended Euclidean Algorithm
3.3 CostanalysisforZand Fx]
Notes e e e e e
EXEICISES . . v . v i e i et i e e e e e e e e

4 Applications of the Euclidean Algorithm

41 Modulararithmetic. 0L
4.2 Modularinverses viaEuclido
43 Repeatedsquaring s
4.4 Modularinverses viaFermat
4,5 Linear Diophantine equations

vii

21

27
27
30
32
35
39
39

43
43
46
50
55
57

viii Contents

4.6 Continued fractions and Diophantine approximation 73
47 Calendars. e e e e e e e e e e e e e e 17 .
4.8 Musicalscales..........................;78
NOES - -« o o o e 81
EXEICISES . . & v o o e i e e e e e e e e e e e e e e e e 84
5 Modular algorithms and interpolation 89
5.1 Change of representation 92
5.2 Evaluation and interpolation 93
5.3 Application: Secretsharing 95
5.4 The Chinese Remainder Algorithm 96
5.5 Modular determinant computation 101
5.6 Hermiteinterpolation 105
5.7 Rational function reconstruction 106
5.8 Cauchyinterpolation 110
59 Padé approximationo e e o 112
5.10 Rational number reconstruction Lo e . 116
5.11 Partial fraction decomposition 119
NOES . . v o o o e e e e e e e e e e e e e e e e e 122
EXEICISES . o v o v v e v e e e e e e e e e e e e e 123
6 The resultant and gcd computation 131
6.1 Coefficient growth in the Euclidean Algorithm 131
62 GauB’lemma. 137
6.3 Theresultant o i oo e 142
6.4 Modular ged algorithms oo 148
6.5 Modular ged algorithmin Flx,y]o oo 151
6.6 Mignotte’s factor bound and a modular ged algorithm inZ{x] .. 153
6.7 Small primes modular ged algorithmso 157
6.8 Application: intersecting planecurveso 161
6.9 Nonzero preservation and the gcd of several polynomials 165
6.10 Subresultants - o o e e e e e 167
6.11 Modular Extended Euclidean Algorithms 172
6.12 Pseudo-division and primitive Euclidean Algorithms 180
6.13 Implementations oo s o s e 182
NOIES « » o v e e et e e e e e e et e e e e e e e 185
BXEICISES . & v v v v v v v e e e e e e e e e e 188
7 Application: Decoding BCH codes 197
NOEES + o v v o e 203

EXEICISES . o « v o e o e e s e e e e e e e e e e e e e e e e 203

Contents ix

II Newton 205
8 Fast multiplication , 209
8.1 Karatsuba’s multiplication algorithm 210

8.2 The Discrete Fourier Transform and the Fast Fourier Transform . 215

8.3 Schonhage and Strassen’s multiplication algorithm 225
8.4 Multiplicationin Z[x] and R[x,y} 233
Notes e e e e e 234

Exercises L e 235

9 Newton iteration 243
9.1 Division with remainder using Newton iteration 243
9.2 Generalized Taylor expansion and radix conversion. 250

9.3 Formal derivatives and Taylorexpansion 251

9.4 Solving polynomial equations via Newton iteration 253
9.5 Computingintegerroots o . .t v ot et 257

9.6 Valuations, Newton iteration, and Juliasets 259
9.7 Implementations of fast arithmetic. 263
Notes v o e e e e e 272

Exercises e e e 272

10 Fast polynomial evaluation and interpolation 279
10.1 Fast multipoint evaluation 279
10.2 Fastinterpolation. 283
10.3 Fast Chinese remaindering 285
Notes o e e 290

Exercises e e 290

11 Fast Euclidean Algorithm 295
11.1 A fast Euclidean Algorithm for polynomials 295
11.2 Subresultants via Euclid’s algorithm 306
NOES o o e e e e e e e e e 310

EXErcises« o i i i e e e e e 310

12 FKast linear algebra 313
12.1 Strassen’s matrix multiplication 313
12.2 Application: fast modular composition of polynomials 316
12.3 Linearly recurrent sequUences oo 00 o u 317
12.4 Wiedemann’s algorithm and black box linear algebra 323
Notes e e e e e e e e e e e e e e 330

EXercises o e e e e e e e e e e e e e 331

Contents

13 Fourier Transform and image compression

13.1 The Continuous and the Discrete Fourier Transform
13.2 Audio and videocompression
Notes o

III GauB

14 Factoring polynomials over finite fields

14.1 Factorization of polynomials
14.2 Distinct-degree factorization,
14.3 Equal-degree factorization: Cantor and Zassenhaus’ algorithm .
14.4 A complete factoring algorithm
14.5 Application: rootfinding
14.6 Squarefree factorization
147 The iterated Frobenius algorithm
14.8 Algorithms based on linearalgebra
14.9 Testing irreducibility and constructing irreducible polynomials
14.10 Cyclotomic polynomials and constructing BCH codes

Notes e

15 Hensel lifting and factoring polynomials

15.1 Factoring in Z[x] and Q[x}: the basicidea
15.2 A factoring algorithm
15.3 Frobenius’ and Chebotarev’s density theorems
154 Hensellifting
15.5 Mulitifactor Hensel lifting e e
15.6 Factoring using Hensel lifting: Zassenhaus’ algorithm
1577 Implementations

Notes e

16 Short vectors in lattices

16.1 Lattices v o i e
16.2 Lenstra, Lenstra and Lovasz’ basis reduction algorithm
16.3 Costestimate for basis reduction
16.4 Fromshortvectorstofactors.
16.5 A polynomial-time factoring algorittm for Q[x]
16.6 Factoring multivariate polynomials

Notes

335
335
339
344
344

347

353
353
356

. 358

365
368
369
373
377

. 382

387
393
397

407
407
409
415
418
424
427
435
440
441

Contents

17 Applications of basis reduction

17.1

17.2

17.3
17.4

Breaking knapsack-type cryptosystems -
Pseudorandom numberso oo
Simultaneous Diophantine approximation
Disproof of Mertens’ conjecture
NOES . v o o o e s
EXEICISES - « v v v v i v e e et e e e e e e e e

IV Fermat

18 Primality testing

19

20

18.1
18.2
18.3
18.4
18.5
18.6

Multiplicative order of integers
The Fermattest o« o« o o v o v v e e e e e
The strong pseudoprimality test o
Finding primes« . o oo e
The Solovay and Strassentest

The complexity of primality testing :

NOLES . . o e v e
EXEICISES . & & v o v e e e e e e e e e e e e e e e e e e

Factoring integers

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Factorization challenges« o oo
Taal diVISION . .« - v o o e e e e e e e e e e e e e
Pollard’s and Strassen’smethodo
Pollard’sthomethod« o oo oo
Dixon’s random squaresmethod oo
Pollard’s p—1method
Lenstra’s elliptic curve methodo
NOWES &+ o v v e v e e e e e e e e e e e e e e e e e e
EXEICISES . « o« v o v e e e e e e e e e e e e e e e

Application: Public key cryptography

20.1
20.2
20.3
20.4
20.5
20.6
20.7

CCIYPLOSYSIEINIS o . o o v o oo e o e e e

The RSA cryptosystem« v oo v v n e
The Diffie—-Hellman key exchange protocol
The ElGamal cryptosystem oo oo oo e
Rabin’s cryptosystem« o« o v oo e e e e
Elliptic curve Systems« . o c s
Short vector Cryptosystems - .o
NOES . o o o o e e e e e e e e e e e e e e e e e
EXErCISES . « v v v« v v v o e e e e e e

Xi

477
477
479
479
482
433
483

485

491
491
493
494
497
503
504
506
509

515
515
518
518
519
523
531
531
541
543

xii Contents

V Hilbert

21 Grobner bases

21.1 Polynomialideals
21.2 Monomial orders and multivariate division with remainder . .
21.3 Monomial ideals and Hilbert’s basis theorem
21.4 Grobner bases and S-polynomials
21.5 Buchberger’salgorithm
21.6 Geometric applications
21.7 The complexity of computing Grobner bases

Notes e e

22 Symbolic integration
22.1 Differentialalgebra
222 Hemmite’smethod0 ..
22.3 The method of Rothstein and Trager.
‘ Notes e e e e e

23 Symbolic summation
23.1 Polynomial summation,....
232 Harmonicnumbers
23.3 Greatest factorial factorization e e e e e
23.4 Hypergeometric summation: Gosper’s algorithm
Notes o e e e e e

24 Applications
24.1 Grobnerproofsystems Lo
242 Petrinets e I
24.3 Proving identities and analysis of algorithms
244 Cyclohexanerevisited JE .
Notes o e e e e e e

Appendix

25 Fundamental concepts
25.1 Groups e e e e e e e e e e
252 Rings L e
253 Polynomialsandfields

559

565
565

. 570

575
579
582
586
589
591
593

597
597
599
601
606
606

609
609
614
617
622
633
635

641
641
643
645
649
661
662

Contents X1ik

254 Finitefields 675
25.5 Linearalgebra 677
25.6 Finite probabilityspaces 681
257 “BigOh”notation 684
258 Complexitytheory o0, 685

Noteso e 688
Sources of illustrations oo 689
Sourcesof quotations L Lo o e 689
Listofalgorithms 694
Listof figuresandtables 696
References o o L e 698
Listofnotation e 728
Index e e e e 729

Keeping up to date

Addenda and corrigenda, comments, solutions to selected exercises, and
ordering information can be found on the book’s web page:

http://www-math.uni-paderborn.de/mca/

Introduction

In science and engineering, a successful attack on a problem will usually lead to
some equations that have to be solved. There are many types of such equations:
differential equations, linear or polynomial equations or inequalities, recurrences,
equations in groups, tensor equations, etc. In principle, there are two ways of
solving such equations: approximately or exactly. Numerical analysis is a well-
developed field that provides highly successful mathematical methods and com-
puter software to compute approximate solutions.

Computer algebra is a more recent area of computer science, where mathemat-
ical tools and computer software are developed for the exact solution of equations.

Why use approximate solutions at all if we can have exact solutions? The an-
swer is that in many cases an exact solution is not possible. This may have various
reasons: for certain (simple) ordinary differential equations, one can prove that no
closed form solution (of a specified type) is possible. More important are ques-
tions of efficiency: any system of linear equations, say with rational coefficients,
can be solved exactly, but for the huge linear systems that arise in meteorology,
nuclear physics, geology or other areas of science, only approximate solutions
can be computed efficiently. The exact methods, run on a supercomputer, would
not yield answers within a few days or weeks (which is not really acceptable for
weather prediction).

However, within its range of exact solvability, computer algebra usually pro-
vides more interesting answers than traditional numerical methods. Given a dif-
ferential equation or a system of linear equations with a parameter ¢, the scientist
gets much more information out of a closed form solution in terms of ¢ than from
several solutions for specific values of ¢.

Many of today’s students may not know that the slide rule was an indispens-
able tool of engineers and scientists until the 1960s. Electronic pocket calculators
made them obsolete within a short time. In the coming years, computer algebra
systems will similarly replace calculators for many purposes. Although still bulky
and expensive (hand-held computer algebra calculators are yet a novelty), these
systems can easily perform exact (or arbitrary precision) arithmetic with numbers,

2 Introduction

matrices, polynomials, etc. They will become an indispensable tool for the scient-
ist and engineer, from students to the work place. These systems are now becoming
integrated with other software, like numerical packages, CAD/CAM, and graphics.

The goal of this text is to give an introduction to the basic methods and tech-
niques of computer algebra. Our focus is threefold:

o complete presentation of the mathematical underpinnings,
o asymptotic analysis of our algorithms, sometimes “Oh-free”,

o development of asymptotically fast methods.

It is customary to give bounds on running times of algorithms (if any are given
at all) in a “big-Oh” form (explained in Section 25.7), say as O(nlogn) for the
FFT. We often prove “Oh-free” bounds in the sense that we identify the numer-
ical coefficient of the leading term, as %nlogzn in the example; we may then add
O(smaller terms). But we have not played out the game of minimizing these coef-
ficients; the reader is encouraged to find smaller constants herself.

Many of these fast methods have been known for a quarter of a century, but
their impact on computer algebra systems has been slight, partly due to an “unfor-
tunate myth” (Bailey, Lee & Simon 1990) about their practical (ir)relevance. But
their usefulness has been forcefully demonstrated in the last few years; we can now
solve problems—for example, the factorization of polynomials—of a size that was
unassailable a few years ago. We expect this success to expand into other areas of
computer algebra, and indeed hope that this text may contribute to this develop-
ment. The full treatment of these fast methods motivates the “modern” in its title.
(Our title is a bit risqué, since even a “modern” text in a rapidly evolving discipline
such as ours will obsolesce quickly.)

The basic objects of computer algebra are numbers and polynomials. Through-
out the text, we stress the structural and algorithmic similarities between these two
domains, and also where the similarities break down. We concentrate on polyno-
mials, in particular univariate polynomials over a field, and pay special attention
to finite fields. :

We will consider arithmetic algorithms in some basic domains. The tasks that
we will analyze include conversion between representations, addition, subtraction,
multiplication, division, division with remainder, greatest common divisors, and
factorization. The basic domains for computer algebra are the natural numbers,
the rational numbers, finite fields, and polynomial rings.

Our three goals, as stated above, are too ambitious to keep up throughout. In
some chapters, we have to content ourselves with sketches of methods and out-
looks on further results. Due to space limitations, we sometimes have recourse to
the lamentable device of “leaving the proof to the reader”. Don’t worry, be happy:
solutions to the corresponding exercises are available on the book’s web site.

Introduction 3

After writing most of the material, we found that we could structure the book
into five parts, each named after a mathematician that made a pioneering con-
tribution on which some (but, of course, not all) of the modern methods in the
respective part rely. In each part, we also present selected applications of some of
the algorithmic methods.

The first part EUCLID examines Euclid’s algorithm for calculating the ged,
and presents the subresultant theory for polynomials. Applications are numerous:
modular algorithms, continued fractions, Diophantine approximation, the Chinese
Remainder Algorithm, secret sharing, and the decoding of BCH codes.

The second part NEWTON presents the basics of fast arithmetic: FFT-based mul-
tiplication, division with remainder and polynomial equation solving via Newton
iteration, and fast methods for the Euclidean Algorithm and the solution of sys-
tems of linear equations. The FFT originated in signal processing, and we discuss
one of its applications, image compression.

The third part GAUSS deals exclusively with polynomial problems. We start
with univariate factorization over finite fields, and include the modern methods
that make attacks on enormously lasrge problems feasible. Then we discuss polyno-
mials with rational coefficients. The two basic algorithmic ingredients are Hensel
lifting and short vectors in lattices. The latter has found many applications, from
breaking certain cryptosystems to Diophantine approximation.

The fourth part FERMAT is devoted to two integer problems that lie at the found-
ation of algorithmic number theory: primality testing and factorization. The most
famous modern application of these classical topics is in public key cryptography.

The fifth part HILBERT treats three different topics which are somewhat more
advanced than the rest of the text, and where we can only exhibit the foundations of
a rich theory. The first topic is Grobner bases, a successful approach to deal with
multivariate polynomials, in particular questions about common roots of several
polynomials. The next topic is symbolic integration, where we concentrate on the
basic case of integrating rational functions. The final topic is symbolic summation;
we discuss polynomial and hypergeometric summation.

The text concludes with an appendix that presents some foundational material in
the language we use throughout the book: The basics of groups, rings, and fields,
linear algebra, probability theory, asymptotic O-notation, and complexity theory.

Each of the first three parts contains an implementation report on some of the
algorithms presented in the text. As case studies, we use two special purpose pack-
ages for integer and polynomial arithmetic: NTL by Victor Shoup and BIPOLAR
by the authors.

Most chapters end with some bibliographical and historical notes or supplement-
ary remarks, and a variety of exercises. The latter are marked according to their
difficulty: exercises with a * are somewhat more advanced, and the few marked
with ** are more difficult or may require material not covered in the text. Labor-
ious (but not necessarily difficult) exercises are marked by a long arrow —. The

4 Introduction

book’s web page http://www-math.uni-paderborn.de/mca/ has some hints
and solutions. ~

This book presents foundations for the mathematical engine underlying any
computer algebra system, and we give substantial coverage—often, but not al-
ways, up to the state of the art—for the material of the first three parts, dealing
with Euclid’s algorithm, fast arithmetic, and the factorization of polynomials. But
we hasten to point out some unavoidable shortcomings. For one, we cannot cover
completely even those areas that we discuss, and our treatment leaves out ma-
jor interesting developments in the areas of computational linear algebra, sparse
multivariate polynomials, combinatorics and computational number theory, quan-
tifier elimination and solving polynomial equations, and differential and difference
equations. Secondly, some important questions are left untouched at all; we only
mention computational group theory, parallel computation, computing with tran-
scendental functions, isolating real and complex roots of polynomials, and the
combination of symbolic and numeric methods. Finally, a successful computer al-
gebra system involves much more than just the mathematical engine: efficient data
structures, a fast kernel and a large compiled or interpreted library, user interface,
graphics capability, clever marketing, etc. These issues are highly technology-
dependent, and there is no single good solution for them,

The present book can be used as the textbook for a one-semester or a two-
semester course in computer algebra. The basic arithmetic algorithms are dis-
cussed in Chapters 2 and 3, and Sections 4.1-4.4, 5.1-5.5, 8.1-8.2,9.1-9.4, 14.1-
14.6, and 15.1-15.2. In addition, a one-semester undergraduate course might
be slanted towards computational number theory (9.5, 18.1-18.4, and parts of
Chapter 20), geometry (21.1-21.6), or integration (4.5, 5.11, 6.2-6.4, and Chap-
ter 22), supplemented by fun applications from 4.64.8, 5.6-5.9, 6.8, 9.6, Chapter
13, and Chapters | and 24. A two-semester course could teach the “bastcs™ and
6.1-6.7, 10.1-10.2, 15.4-15.6, 16.1-16.5, 18.1-18.3, 19.1-19.2, 19.4, 19.5 or
19.6--19.7, and one or two of Chapters 21-23, maybe with some applications from
Chapters 17, 20, and 24. A graduate course can be more eclectic. We once taught
a course on “factorization”, using parts of Chapters 14-16 and 19. Another pos-
sibility is a graduate course on “fast algorithms” based on Part II. For any of these
suggestions, there is enough material so that an instructor will still have plenty of
choice of which areas to skip. The logical dependencies between the chapters are
given in Figure 1.

The prerequisite for such a course is linear algebra and a certain level of mathe-
matical maturity; particularly useful is a basic familiarity with algebra and analysis
of algorithms. However, to allow for the large variations in students’ background,
we have included an appendix that presents the necessary tools. For that material,
the border between the boring and the overly demanding varies too much to get
it right for everyone. If those notions and tools are unfamiliar, an instructor may
have to expand beyond the condensed description in the appendix. Otherwise,

i T |

el - ad

s

Introduction ' 5

MODERN
COMPUTER ALGEBRA

EUCLID

FERMAT

\
10 Fast evaluauon
and mtcrpolat:on

—

11 Fast Euchdean
: Algonthm ';".1:

Pt

14. Factoring

[over finite fields

r

18. Primality
“ testing

J

[19 Factormg h
mtegers ‘J

" 20. Public key
cryptography |

15. Hensel 21.‘Gri:_')briér 7
hftmg Tt bases? i 2

GAUSS

{ 16. Short vectors.W

in lattices

(17. 1ﬂappiical:i':msj

Lo

f basis reduction
L

1 1

[23 Symbohc 3

"o summatlon i)

[ZﬁvnifcéﬁéiisJ HILBERT

FIGURE 1: Leitfaden.

6 Introduction

most of the presentation is self-contained, and the exceptions are clearly indicated.
By their nature, some of the applications assume a background in the relevant area.

The beginning of each part presents a biographical sketch of the scientist after
which it is named, and throughout the text we indicate some of the origins of our
material. For lack of space and competence, this is not done in a systematic way,
let alone with the goal of completeness, but we do point to some early sources,
often centuries old, and quote some of the original work. Interest in such historical
issues is, of course, a matter of taste. It is satisfying to see how many algorithms
are based on venerable methods; our essentially “modern” aspect is the concern
with asymptotic complexity and running times, faster and faster algorithms, and
their computer implementation.

Acknowledgements. This material has grown from undergraduate and graduate
courses that the first author has taught over more than a decade in Toronto, Ziirich,
Santiago de Chile, Canberra, and Paderborn. He wants to thank above all his two
teachers: Volker Strassen, who taught him mathematics, and Allan Borodin, who
taught him computer science. To his friend Erich Kaltofen he is grateful for many
enlightening discussions about computer algebra.

The second author wants to thank his two supervisors, Helmut Meyn and Volker
Strehl, for many stimulating lectures in computer algebra.

The support and enthusiasm of two groups of people have made the courses

a pleasure to teach. On the one hand, the colleagues, several of whom actually
shared in the teaching: Leopoldo Bertossi, Allan Borodin, Steve Cook, Faith Fich,
Shuhong Gao, John Lipson, Mike Luby, Charlie Rackoff, and Victor Shoup. On
the other hand, lively groups of students took the courses, solved the exercises
and tutored others about them, and some of them were the scribes for the course
notes that formed the nucleus of this text. We thank particularly Paul Beame,
Isabel de Correa, Wayne Eberly, Mark Giesbrecht, Rod Glover, Silke Hartlieb,
Jim Hoover, Keju Ma, Jim Mclnnes, Pierre McKenzie, Sun Meng, Rob Morenz,
Michael Nocker, Daniel Panario, Michel Pilote, and Frangois Pitt.
- Thanks for help on various matters go to Eric Bach, Peter Blau, Wieb Bosma,
Louis Bucciarelli, Désirée von zur Gathen, Keith Geddes, Dima Grigoryev, Jo-
han Héstad; Dieter Herzog, Marek Karpinski, Wilfrid Keller, Les Klinger, Werner
Krandick, Ton Levelt, Janos Makowsky, Ernst Mayr, Frangois Morain, Gerry My-
erson, Michael Niisken, David Pengelley, Bill Pickering, Tomds Recio, Jeff Shallit,
Igor Shparlinski, Irina Shparlinski, and Paul Zimmermann.

We thank Sandra Feisel, Carsten Keller, Thomas Liicking, Dirk Miiller, and
Olaf Miiller for programming and the substantial task of producing the index, and
Marianne Wehry for tireless help with the typing.

We are indebted to Sandra Feisel, Adalbert Kerber, Preda Mihdilescu, Michael
Nocker, Daniel Panario, Peter Paule, Daniel Reischert, Victor Shoup, and Volker
Strehl for carefully proofreading parts of the draft.

