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PREFACE

This book developed from a first-year graduate course each of us has taught at
Stanford since 1965. Most first-year physics graduate students enroll, along with
some advanced undergraduates in physics and many graduate students from other
departments. Originally, the course treated particle mechanics and mathematical
physics, but the latter portion gradually evolved into a course on the physics of
classical continuous media, not only for its own intrinsic interest but also as a
natural outgrowth of the earlier material. We feel that a broad and thorough
training in classical physics is essential for modern students of physics, indepen-
dent of their subsequent choice of career. For example, familiarity with continuum
mechanics, hydrodynamics, acoustics, and wave phenomena is fundamental in
understanding the world around us, yet these subjects are generally missing from
the standard graduate physics curriculum. In addition, classical mechanics pro-
vides a natural framework for introducing many of the advanced mathematical
concepts in physics. A student’s physical intuition concerning these everyday
systems helps distinguish the mathematical questions from the physical ores, in
,contrast to the situation in classical electrodynamics or quantum mechanics,
‘where the less familiar physics may itself be a source of difficulty.

We intend this frankly as a textbook and aim to provide a lucid and self-
contained account of classical mechanics, together with appropriate mathematical
methods. Although two quarters suffice to teach much of the material, a full year
would allow a more complete and leisurely treatment. The material divides nat-
urally into two parts: particles and continua. The first part starts from Newton's
laws of motion and systematically develops the dynamics of classical particles, with
chapters on basic principles, rotating coordinate systems, lagrangian formalism,
small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including
a brief discussion of the transition to quantum mechanics. This part of the book
also considers examples of the limiting behavior of many particles, facilitating
the eventual transition to a continuous medium. The second part deals with
classical continua, including chapters on strings, membranes, sound waves,
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«urface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic
media. Each of these latter chapters is seif-contained, providing the relevant
physical background and developing the appropriate mathematical techniques.
Thus the text treats lagrangian field theory, eigenfunctions and Sturm-Liouville
theory, variational methods, perturbation theory, Green’s functions, Fourier and
Laplace -transforms, and asymptotic techniques like the method of stationary
phase. In addition, appendixes provide brief summaries of the theory of complex
variables, vector and tensor calculus in curvilinear orthogonal coordinates,
separation of variables, and .ntzgral representations of special functions.

Any treatment of :lassical mechanics must confront the question of special
relativity. We have decided to omit it entirely, for we feel that it fits more
naturally into classical electrodynamics, where the Lorentz invariance facilitates
the treatment of four-dimensional space-time. In contrast, the customary rela-
tivistic generalization of Newton’s laws of motion strikes us as cumbersome at best.

A textbook on mechanics faces a difficult problem in selecting references.
Since our aim is to teach current physics for modern applications, we have not
included primary sources, which students frequently find obscure or irtelevant.
Some historical perspective is valuable, however, and we end this preface with a
short chronological list of significant names associated with mechanics and
mathematical physics. In addition, we have listed in Appendix G several familiar
basic texts and monographs. These sources suffice for most sections, but where
appropriate we have added selected references that we have found partleuiarly
clear or helpful, as a guide to further study.

Every chapter contains several homework problems of varymg degrm of
difficulty. We consider them an integral part of the text, and all students should
attempt several from each chapter. Since classical mechanics is an old subject, no
effort has been made to trace the origin of our examples and problems, many of
which are modified versions of those in the list of texts and monographs.

The reader is assumed to be familiar with intermediate mechanics at the level

of J. B. Marion, Classical Dynamics of Particles and Systems, 2d ed., Academic,

New York, 1970, and with the elements of linear algebra and partial differential
equations. A working knowledge of the first and second law of thermodynamics,
at the level of F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-
Hill, New York, 1965, will make some of the later sections on sound waves, heat
conduction, and viscous fluids more meamngful

We are grateful to our own teachers, in particular S. D. Drell and G. F.
Carrier, for introducing us to many of these beautiful topics. We would also like
to thank Victoria LaBrie for her invaluable help in the preparation of this
manuscript.

Alexander L. Fetter
John Dirk Walecka
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IGNIFICANT NAMES IN MECHANICS
AND MATHEMATICAL PHYSICS

Isaac Newton (1642-1727)

Daniel Bernoulli (1700-1782}

Leonhard Fuler (1707--1783)

Jean Le Rond d’Alembert (1717-1783)

Joseph Louis Lagrange {1736-1813)

Pierre Simon de Laplace (1749-1827)

Adrien Marie Legendre {1752--1833)

Jean Baptiste Joseph Fourier {1768-1830)

Karl Friedrich Gauss {1777-1855)

Siméon-Denis Poisson (1781-1840)

Friedrich Wilhelm Bessel (1784-1846)
Augustin-Louis Cauchy (1789-1857)

George Green (1793--1841)

Carl Gustav Jacob Jacobi (1804-1851)

William Rowan Hamilton {1805-1865)

Joséph Liouville (1809-1882)

George Gabriel Stokes (1819-1903)

Hermann Ludwig Ferdinand Helmholtz (1821-1894)
Gustav Robert Kirchhoff (1824--1887)

William Thomson (Lord Kelvin) (1824-1907)
Georg Friedrich Bernhard Riemann (1826-1866)
John William Strutt (Lord Rayleigh) (1842-1919)

+ Detailed accounts or their contributions can be found in C. C. Gillispie {ed.), " Dictionary ¢!
Scientific Biography,” Scribners, New York. 1970.
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CHAPTEHR

ONE
BASIC PRINCIPLES

Classical mechanics involves the application of Newton’s laws of motion to ¢x.
plain and predict the dynamical motion of point particles and bulk continuous
matter. As such, it concerns the behavior of familiar classical macroscopic
objects—natural and artificial satellites, the atmosphere and the oceans, labora-
tory solids, and even the earth itself. Indeed, one principal aim in studying class:-
cal mechanics is to understand the everyday world and to learn how to describe its
properties quantitatively. In addition, classical mechanics has proved basic v
deriving quantum descriptions of atomic matter, far from the original realm of
classical physics. Finally, the challenge of characterizing continuous media has
stimulated much of the basic mathematics of modern theoretical physics. Thus the
study of bulk systems provides a natural framework for introducing and illustras-
‘ng these techniques.

{ NEWTON’S LAWS

Although Newton’s laws of motion are easily stated, their full implications involve
subtle and complicated nonlinear phenomena that remain only partially explored
Since these laws are central to all our subsequent work, we briefly review them
and some of their most basic corollaries and consequences.

Statement of Newton’s laws

We first define a primary inertial coordinate system that is at rest with respect 1.-
the fixed stars. Newton’s first law then states:



2 CHAPTER ONE

In this primary inertial frame, every body remauins at rest or in uniform motion
unless acted on by a force ¥. The condition ¥ = O rthus implies a constant
velocity v and a constant momentum p = mv.

In effect, Newton’s first law asserts that such an inertial frame exists to arbitrary
accuracy. If we construct an inertial frame and eliminate the forces as accurately
as we can, Newton’s first law appears to hold. Note that any experimental
verification of this law must be approximate. for gravitational forces are always
present in the universe as we know it.

Newton's second and third laws then state:

In the primary inertial frame, application of a torce alters the momentum, in an
amount specified by the quantitarive relation

F = . =P (L.1)
Here a dot denotes a time derivative.

To each action. there is an equal and opposite reaction. Thus if F, is the force
exerted on particle 1 by particle 2. then

Fi,=-F, (12)

and these forces act along the line separating the particles.

In applying these laws, several remarks are relevant. First. if mass is conserved
and constant in time, the relation p = my reduces Eq. (1.1) to the familiar form
dv
F=m 0 (1.3)
Otherwise, it is essential to retain the original expression, e.g.. in studying the
dynamics of an evaporating droplet. Second, Eqs. (1.2) and (1.3) serve to define a
given amount of mass in terms of a fundamental unit m* that acquires unit
acceleration under the influence of a unit force. More precisely, if the standard
particle 1 (mass m*) interacts with any other particle (m, , say), the magnitude of
their relative accelerations a;, and g,, specifies m, through the relation
my|a,; | = m*|a,, |. These considerations are independent of the particular force
law. Thus they apply to the gravitational force between two particles with masses
m,; and m,

F; )= ~Gmym, —‘l‘,‘__‘—a (14‘3)

with G the universal constant of newtonian gravitation, and equally to Coulomb’s
force between two electrified objects with charges Q, and @,

h—r
'rl “”"2‘3

Fby =0,0; (1.4b)
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in cgs units. It is striking that both these basic forces vary as the inverse square of
the separation. It is the physicist’s task to classify and enumerate the forces acting
on a system; Newton's laws then allow one to calculate the subsequent motion.

As a final remark. we can verify the principle of galilean relativity that any
frame moving with constant velocity relative to an inertial frame is again mertial
Thus, two observers moving uniformly with respect to each other and with respect
10 the primary inertial coordinate system infer the same basic laws of motion, at
least in the usual case that F,, depends only on the vector separation of the
narticles.

Proor Let r and r' be the coordinates as seen in two different frames moving with
constant relative velocity V. Evidently r =r + Vi, so thatr, —r; =1, — 1} and
F,; = F};. Moreover, the usual rules of calculus ensure that d’r/dt* = d*r'/dr’.
implying that both the forces and the accelerations are the same in the two frames.

Conservation Laws

it is possible to work directly with Newton’s laws, but there are distinct concep-
rual advantages in introducing special derived quantities like linear and angular
momentum and energy, which turn out to satisfy certain simple relations.

Linear momentum FEquation (1.1} can be reinterpreted as the statement that the
applied force determines the rate of change of p. In particular, p is a constant
vector whenever F vanishes, and this relation holds separately for each vector
component.

Angular momentum Define the angular momentum
L=rxp (1.5a)
and assume that m is constant, implying
L=mrxyv (1.5b)
The rate of change of L is given by
L=mxv+mrxv

and the observation that r = v eliminates the first term on the right-hand side. Use
of Eq. (1.3) then gives

L=rxF=T (1.6)
where I’ is the torque. Once again, we have obtained a vector conservation law.
any specified component of angular momentum remaining constant whenever the
corresponding component of torque vanishes. In contrast to p, however, we note
that L depends on the choice of coordinate frame, since a shift of the origin by —r,,
transforms r into r + r, and L correspondingly becomes mr x p + mr, x p, where
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r, is assumed zero. The even more complicated case of transformation to moving
coordmates will be considered in Chap. 2.

tnergy and work Consider a static force field F(r) defined throughout some
region of space. If a test particle is inserted at r and moved a small distance ds, the
work done on the particle is dW = F(r) - ds. Consequently. the work in moving
the test particle a finite distance from point 1 to point 2 along some particular
path is just the line integral

W,.,=| ds-Fir) (1.74)
‘1

in general. this relation cannot be simplified. For the special case that the particie
starts at r, and follows a dynamical trajectory that passes through r,, however,
the clement of length ds is then just v di, and the dynamical principle {1.3) allows
us to integrate Eq. (1.7a) directly

-
+

) W2 dv .2 dv . d ,
W, .. = ’|1 ds (m . ) = ‘ll dt mv - p=m ‘}1 dt @ bpt = dme3 — dme7  (1.7b)
mdependent of the intervening path. If T = imv? denotes the kinetic energy, the
work done in moving a particle from 1 to 2 is precisely the increase in the kinetic
cnergy T, — T,.

This result can be sharpened if F(r) has the special form

F(r) = —VU(r) (1.8)

where U/ 1s known as the potential. Such forces are called conservative; although
they occur frequently, it 1s important to realize that they are quite restrictive, the
scalar function U(r) being specified by only one number at each point whereas a
general vector field requires three. For such conservative forces, the right-hand
side of Eq. (1.7a) is readily rewritten — {{ ds - VU(r), and the integrand is now just
the d:fferential change in U in moving from r to r 4 ds. Thus

|

.2 L2
— | ds-VU[r)= | dU=-U, + U, (1.9)

"1 ‘1

A combination with Eq. {1.7b) immediately yields the relation T, — T, =
-~ U, + U,, or, equivalently, the conservation law

T1’+'UI=T2+U2 ) (110)

ior the total energy E = T + U in the presence of conservative forces. To conclude
this section, we may also recall two other equivalent criteria for conservative
forces (see Prob. 1.1}:%

VxF(ir)=0 forallr (1.11a)

fds-F@r)=0 for all closed paths (1.11b)

+ Problems will be found at the end of each chapter.



