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Preface

This Volume 2 is a natural continuation of Volume 1. It contains variable exponent
results for spaces less considered in the literature, in particular Holder, Morrey-
Campanato, and grand spaces. Some parts of Volume 2 may be read independently
of Volume 1, but in general reading of Volume 2 requires notation and definitions
given in Volume 1.

In this Volume 2 we cover the problem of the boundedness of maximal, sin-
gular, and potential operators in variable exponent Morrey and Herz spaces, in-
cluding the case of unbounded underlying sets. We provide also a fine comparison
of Morrey and Stummel spaces that is new for constant exponents.

Other new function spaces employed in this volume are weighted Iwaniec-
Shordone spaces and some new spaces that are based on close ideals, such as
grand Morrey spaces and their generalizations. These spaces are well fit for the
study of a wide range of problems of non-linear partial differential equations re-
lated to existence, uniqueness, and regularity. Among other results in the above-
mentioned spaces presented here, it is worthwhile mentioning a complete charac-
terization of weights governing the validity of Sobolev type theorem in weighted
grand Lebesgue spaces defined, generally speaking, over spaces of homogeneous
type (SHT), and the solution of trace problems for one and two-sided potentials
with product kernels and strong fractional maximal functions. We emphasize that
we give also weak and strong type estimates criteria for fractional and singular
integrals (including similar integral transforms with product kernels). Fortunately,
the initial definition of Iwaniec-Sbordone spaces on bounded sets allowed us to
give the above-mentioned results in the form of criteria. In generalized grand Mor-
rey spaces the boundedness of Hardy-Littlewood maximal operators, as well as of
Calder6n-Zygmund operators is established. In the above-mentioned spaces the
boundedness of Riesz-type potential operators is obtained in the framework of
homogeneous and non-homogeneous spaces. We explore also the boundedness of
commutators of Calderén-Zygmund-type operators as well as commutators of frac-
tional integrals with BMO functions in generalized grand Morrey spaces. These
results are applied to establish the regularity of solutions to elliptic equations in
non-divergence form with VMO coefficients by means of the theory of singular
integrals and linear commutators.

All the above-mentioned results on grand Lebesgue spaces concern Iwaniec—

Sbordone spaces in their original setting on bounded sets. In this volume the
v



vi Preface

grand Lebesgue spaces on sets of infinite measure are also introduced and the
boundedness of sublinear operators is established. At the same time, a new version
of weighted grand Lebesgue space on bounded sets is introduced and statements
similar to the above-mentioned results are derived.

One of the novelties of the present book is that we introduce new function
spaces unifying variable exponent Lebesgue spaces and grand Lebesgue spaces.
These spaces are non-reflexive, non-separable, and non-rearrangement invariant.
The boundedness of maximal functions, Calderén-Zygmund singular integrals, and
potentials in grand variable exponent Lebesgue spaces defined on SHT is obtained.

In Appendix we introduce the grand Bochner-Lebesgue spaces in the spirit
of Iwaniec-Shordone spaces and prove some of their properties.

The volumes are mainly written in the consecutive way of presentation of the
material, but in some chapters, for reader’s convenience, we recall definitions of
some basic notions. Although we use unified symbols for notation in most of the
cases, in some of the cases the notation in a chapter is specific for that chapter.
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Basic Definitions and Notation from Volume 1

Definitions and Basic Properties of Variable Exponent
Function Spaces

For an open set © C R", we let LP{*)(€, o) denote the weighted space of measurable
functions f : @ — C with weight as a multiplier, i.e.,

o(x) f () |P®

Il = lefllpey = e x>0 [ |22

dr < 1} <oo. (0.1)

The notation LP()(Q) stands for LP*) (€2, 1),

We also use the notation Lﬁ,(')(Q) for the spaces defined by the norm

p(z)

Hf”Uu(Q mf{)\>0:h/‘@ w(x) d;rgl}.

We often assume that either

1<p-<p(x) <py <oo on £, (0.2)
or
l1<p_<plz)<pr<oo on N (0.3)

The following inequalities hold:

|fIP=, i [ f]

| ' (0.4)
I[P+, i |Lf]

[ £IIP+ < Ipiy () <
< < , (0.5)

LFIP= < Zpy ()

where the modular I,,., is given by

<1
21
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XX Basic Definitions and Notation from Volume 1

In the case of unbounded p we denote Q, = {z € Q : p(z) = +0c} and write

Ifloey = Ifllwy + 1F Nz @u)s (0.6)

p(y)
|lf||(p>=inf{f\>0: / ‘f—f\y—) dysl}.

N\

where

The local log-condition is

Ip(x) — p(y)| < for all z,y € Q with |z —y| < =. (0.7)

o=

A
It

[E=T]

For bounded sets (2, it may be equivalently written as

Ip(z) — p(y)| < z,y €, D> diamQ.

S D
In Tl
The condition
... ]
P p(z)

Ap
= In(e + |z|)’

for all z € Q. (0.8)

for unbounded sets €2 is known as the decay condition.

Basic Notation

Everywhere in the sequel we use the following notation:

N is the set of all natural numbers;

Ny =NuU{0};

R" is the n-dimensional Euclidean space with the distance |z| = /x4 + -+ + x2;
Z is the set of all integers;

B(z,r)={yeR": ly—z| <r};

B(x,r) is the closed ball with center = and radius r;

S l={zeR": |z| =1}

ent1 = (0,0,0,...,0,1) € R**1;

) is an open set in R"™;

0L is the boundary of €2;

P(Q) is the class of measurable functions p : Q — [1, 00|, non necessarily bounded;

P(Q) is the class of exponents p € P(Q) with 1 < p_ < p; < o0;



Basic Definitions and Notation from Volume 1 xxi

Plo&(Q) is the set of bounded exponents p € P () satisfying the local log-condition:
P°8(Q) is the set of exponents p € P°8(Q) with 1 < p_ < py < oc;

for unbounded sets 2, by Puo(R2), P (), PL2%(Q), PI98(Q), we denote the subsets
of the corresponding sets of exponents introduced above which satisfy the decay
condition;

in the case 2 = R, by Py (R4) we denote the class of exponents p € P(Ry)
satisfying the decay condition at the origin and infinity, as in (1.47);

A,(R™), p = const, is the usual Muckenhoupt class of weights, see (2.1);

A,y(Q) is the class of weights o such that the maximal operator is bounded in
the weighted spaces LP)(Q, g);

Ay (R™) is the class of weights p satisfying the condition (2.3);
Ap()(Q) is the class of restrictions to © C R" of weights p € Ay (R");

We usually write inf and sup instead of essinf and esssup, without danger of
confusion;

The notation A ~ B for A > 0 and B > 0 means the equivalence c;A < B € co A
with positive ¢; and ¢; not depending on values of A and B.

Quasimetric Measure Spaces

(X.d, ) always denotes a quasimetric space with a quasidistance d:
d(z,y) < eufd(z, 2) + d(2,y)] ' (0.9)

and a Borel regular measure p. In some chapters we admit a non-symmetric dis-
tance and then we use the constant ¢ = 1 from the condition

d(z,y) < esd(y, z).
We denote ¢/ = diam X. The following standard conditions are assumed to

be fulfilled:

1) all the balls B(z,r) = {y € X : d(x,y) < r} are measurable,
2) the space C(X) of uniformly continuous functions on X is dense in L*(u).
In most of the statements we also assume that
3) the measure p satisfies the doubling condition: puB(z,2r) < CuB(z,r). A
measure satisfying this condition is called doubling measure. A quasimetric

measure space with doubling measure is called space of homogeneous type
(SHT) .

A measure g on X is said to satisfy the reverse doubling condition (written
e RDC(X)), if there exist constants a > 1 and b > 1 such that

u(B(x,ar)) > bu(B(z,r)) (0.10)
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for all z and r. An SHT (X,d, uu) is called an RD-space if p satisfies the reverse
doubling condition.
D(X) will stand for the set of functions in L> on X with compact support.
By EC we denote the complement of a set E in X.
The conditions
w(B(z,r)) < er”. (0.11)
and
uB(z,r) = ¢ rV, (0.12)
are known as the upper and lower Ahlfors conditions; the first one is also referred
to as the growth condition. From the doubling condition it follows that

uB(z, o) o\N
LH50) <o (2)7, N=log,C, ;
B < ( ) N =log, C, (0.13)

7
for all the balls B(x, ¢) and B(y,r) with 0 < r < p and y € B(z, 7). From (0.13)
it follows that the doubling condition implies the lower Ahlfors condition for any
open bounded set Q& C X on which inf,ecq uB(z,¢) > 0, with £ = diam 2.

The Hardy-Littlewood maximal function is defined by

1
Mf(z) = iglgm f | £ ()| dp(y)-
B(z,r)

The space LPU)(X) = LZ(')(X) on (X,d, u) is defined in the standard way:

1Al ) :inf{/\ o /‘@
X

In the quasimetric measure spaces setting we use two forms of the log-
condition. By P'°8(X) we denote the set of u-measurable functions which satisfy
the standard local log-condition on (X, d, p) :

s
~Ind(zx,y)’

p(x)

du(z) < 1}. (0.14)

lp(z) — p(y)| < dlz,y) <z, zyelX, (0.15)

| =

and by ’PL"g(X ) we denote the set of functions p : X — [1,00) which satisfy the
condition 4

Ip(z) = p(y)l < —- uB(z, d(

=) (0.16)

for all z,y € X such that uB(z,d(z,y)) < %, but note that in different chapters
different notation may be used for these conditions.
In the case d(z,y) = d(y, =) the condition (0.16) is equivalent to its symmet-
rical form
A A

+ <.
—lnﬂB(fB»d(Tvy)) —lnﬂB(y-d(%y))

|p(z) — p(y)| <
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The log-condition in the form (0.16), which coincides with (0.15) in the
Euclidean space, is more suitable in the context of general quasimetric mea-
sure spaces, because in some results it allows one to impose fewer restrictions
on (X,d, p).

The following embeddings hold:

Plo8(X) C 'p‘ltog(X)’ (0.17)

or
POE(X) € PE(X), (0.18)

according to whether the lower or upper Ahlfors condition holds (see Lemma 2.56
in Volume 1).
For Q C X and p € ’P}fg(ﬂ) the estimate holds:

IxB@mlp <C Bz, r)] 70 (0.19)

for all » € [0, diam ] when € is bounded and for r € [0,a],a < oo; the estimate
(0.19) is valid also for p € P)%8 if the lower Ahlfors condition holds. (See Lemma
2.57 in Volume 1.)
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