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CHAPTER

Pressure and Sound
Measurement

6.1 STANDARDS AND CALIBRATION

Pressure is not a fundamental quantity, but rather is derived from force and area,
which in turn are derived from mass, length, and time, the latter three being funda-
mental quantities whose standards have been discussed earlier. Pressure “standards”
in the form of very accurate instruments are available, though, for calibration of less
accurate instruments. However, these “standards” depend ultimately on the funda-
mental standards for their accuracy. The basic standards' for pressures ranging from
medium vacuum (about 10~! mmHg) up to several hundred thousand pounds per
square inch are in the form of precision mercury columns (manometers) and dead-
weight piston gages. For pressures in the range 10~! to 1073 mmHg, the McLeod
vacuum gage is considered the standard. For pressures below 10~3 mmHg, a
pressure-dividing technique allows flow through a succession of accurate orifices to
relate the low downstream pressure to a higher upstream pressure (which is accu-
rately measured with a McLeod gage).”

This technique can be further improved by substituting a Schulz hot-cathode or
radioactive ionization vacuum gage for the McLeod gage. Each of these must
be calibrated against a McLeod gage at one point (about 9 X 10”2 mmHg), but
their known linearity is then used to extend their accurate range to much lower
pressures.>

ID. P. Johnson and D. H. Newhall, “The Piston Gage as a Precise Pressure-Measuring Instrument,” Instrum.
Contr. Syst., p. 120, April 1962; “Errors in Mercury Barometers and Manometers,” Instrum. Contr. Syst.,

p. 121, March 1962; “2” Range Hg Manometer,” Instrum. Contr. Syst., p. 152, September 1962.

2J. R. Roehrig and J. C. Simons, “Calibrating Vacuum Gages to 10~° Torr,” Instrum. Contr: Syst., p. 107,
April 1963.

3. C. Simons, “On Uncertainties in Calibration of Vacuum Gages and the Problem of Traceability,”
Transactions of 10th National Vacuum Symposium, p. 246, Macmillan, New York, 1963.
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Gage and Pressure Measurement Uncertainties

Type of Instrument Range Uncertainty
Gas-operated PG 1.4kPato 17 MPa *57 ppm
Oil-operated PG 700 kPa to 100 MPa =63 ppm

100 MPa to 280 MPa +60 to =150 ppm
Oil-operated PG 40 to 400 MPa *+186 ppm

The inaccuracies of the above-mentioned pressure standards are summarized
graphically in Fig. 6.1a,* with Fig. 6.15° giving more recent data. Since the above-
mentioned pressure standards are also pressure-measuring instruments (of the
highest quality and used under carefully controlled conditions), their operating
principles and characteristics are not discussed here since they are adequately
covered later.

6.2 BASIC METHODS OF PRESSURE MEASUREMENT

Since pressure usually can be easily transduced to force by allowing it to act on a
known area, the basic methods of measuring force and pressure are essentially the
same, except for the high-vacuum region where a variety of special methods not
directly related to force measurement are necessary. These special methods are
described in the section on vacuum measurement. Other than the special vacuum
techniques, most pressure measurement is based on comparison with known dead-
weights acting on known areas or on the deflection of elastic elements subjected to
the unknown pressure. The deadweight methods are exemplified by manometers
and piston gages while the elastic deflection devices take many different forms.

6.3 DEADWEIGHT GAGES AND MANOMETERS

Figure 6.2 shows the basic elements of a deadweight or piston gage. Such devices
are employed mainly as standards for the calibration of less accurate gages or trans-
ducers. The gage to be calibrated is connected to a chamber filled with fluid whose
pressure can be adjusted by some type of pump and bleed valve. The chamber also
connects with a vertical piston-cylinder to which various standard weights may be
applied. The pressure is slowly built up until the piston and weights are seen to
“float,” at which point the fluid “gage” pressure (pressure above atmosphere) must
equal the deadweight supported by the piston, divided by the piston area.

For highly accurate results, a number of refinements and corrections are
necessary. The frictional force between the cylinder and piston must be reduced to
a minimum and/or corrected for. This is generally accomplished by rotating either
the piston or the cylinder. If there is no axial relative motion, this rotation should
reduce the axial effects of dry friction to zero. There must, however, be a small
clearance between the piston and the cylinder and thus an axial flow of fluid from

“‘Accuracy in Measurements and Calibrations,” NBS Tech. Note 262, 1965.
SNBS Spec. Publ. 250, 1987.
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Pressure measurement
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Pressure/vacuum standards.

the high-pressure end to the low-pressure end. This flow produces a viscous shear
force tending to support part of the deadweight. This effect can be estimated from
theoretical calculations.5 However, it varies somewhat with pressure since the

SR. J. Sweeney, “Measurement Techniques in Mechanical Engineering,” p. 104, Wiley, New York, 1953.
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Deadweight gage calibrator.

piston and cylinder deform under pressure, thereby changing the clearance. The
clearance between the piston and cylinder also raises the question of which area is
to be used in computing pressure. The effective area generally is taken as the aver-
age of the piston and cylinder areas. Further corrections are needed for temperature
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effects on areas of piston and cylinder, air and pressure-medium buoyancy effects,
local gravity conditions, and height differences between the lower end of the piston
and the reference point for the gage being calibrated. Special designs and techniques
allow use of deadweight gages for pressures up to several hundred thousand pounds
per square inch. An improved design, the controlled-clearance piston gage,’
employs a separately pressurized cylinder jacket to maintain the effective area
constant (and thus achieve greater accuracy) at high pressures, which cause expan-
sion and error in uncompensated gages.

Since the piston assembly itself has weight, conventional deadweight gages are
not capable of measuring pressures lower than the piston weight/area ratio (“tare”
pressure). This difficulty is overcome by the tilting-piston gage® in which the cylin-
der and piston can be tilted from vertical through an accurately measured angle, thus
giving a continuously adjustable pressure from 0 Ib/in? gage up to the tare pressure.
The described gage uses nitrogen or other inert gas as the pressure medium and
covers the range 0 to 600 Ib/in® gage, having two interchangeable piston-cylinders
and 14 weights. The accuracy is 0.01 percent of reading in the range 0.3 to 15 1b/in?
gage and 0.015 percent of reading in the range 2 to 600 Ib/in? gage. The tilting
feature is used for the ranges 0 to 0.3 and O to 2.0 1b/in® gage; higher pressures are
obtained in increments by the addition of discrete weights.

Some piston gages have been highly instrumented and automated to allow more
convenient and rapid use. One such line’ includes sensors for relative humidity,
barometric pressure, ambient temperature, piston/cylinder temperature, piston rota-
tion speed and acceleration, and piston drop rate. These readings are manipulated in
the software to provide a readout of the calibration pressure. A typical formula!®
showing the relations is

Pair
Mg, (l pmass> + 7wDT

Gauge _ _ _ )
pressure ~ Ay o [T+ (@, T @) (0 — 201 (1 + xP) Pt ~ Paur) * 811 (6:1)
where M = the total mass load
g, = the local acceleration of gravity
p = density

D = piston diameter (computed from Ay ¢, the piston/cylinder
effective area at 20°C and 0 gage pressure)

D. H. Newhall and L. H. Abbot, “Controlled-Clearance Piston Gage,” Meas. & Data,
January-February 1970.

8Ruska Instrument Corp., Houston, TX, www.ruska.com.

9DH Instruments, Inc., Phoenix, AZ, 602-431-9100 (www.dhinstruments.com).

10HH Instruments, “Precision Pressure Measurement Handbook,” Ametek, Largo, FL, 727-536-7831
(www.ametek.com/tci). The handbook contains the following relevant entries: “Uncertainty Analysis

for Pressure Defined by a PG7601, 7102 or 7302 Piston Gage™; “PG7000 Differential Mode for Defining
Low and Negative Differential Pressure at Various Static Pressures”; “Increasing the Accuracy of Pressure

Measurement Through Improved Piston Gage Effective Area Determination”; “Fundamental Differential
Pressure Calibrations.”
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T = gage-fluid surface tension

a,, a, = thermal expansion coefficients of piston and cylinder,
respectively

6 = the piston/cylinder temperature
A = piston/cylinder elastic deformation coefficient

h = the height difference between piston gage reference level
and the reference level of the unit under calibration

This equation makes clear how various error sources must be corrected to achieve
the highest possible accuracy.

A very convenient pressure standard'! (although not really a deadweight gage)
combines a precision piston gage with a magnetic null-balance laboratory scale!'?
(Fig. 6.3). The gas or liquid pressure to be measured (generated and regulated by a
system external to the pressure standard) is applied to one end of a rotating piston;
the other end of the piston is supported by the “weighing platform” of the laboratory
scale, which measures the pressure force and gives a digital readout of 40,000
counts full scale. Tungsten carbide piston/cylinders allow clearances less than 1 um;
the high hardness and elastic modulus maintain precision in the face of potential
wear and pressure expansion. Piston-cylinder pairs are easily interchanged to give
five full-scale ranges from 80 to 1,200 Ib/in®. Since deadweights are not utilized to
measure the pressure force, periodic recalibration against a set of four precision
masses is required. However, this is made quick and easy by using the scale’s auto-
tare feature and a simple screwdriver span adjustment. Instrument uncertainty on
the 80 1b/in? range (other ranges are proportional) is +(0.004 + 10~*p) Ib/in?, where
p is the actual pressure in pounds per square inch and repeatability is =1 count.

Deadweight gages may be employed for absolute- rather than gage-pressure
measurement by placing them inside an evacuated enclosure at (ideally) O Ib/in?
absolute pressure. Since the degree of vacuum (absolute pressure) inside the enclo-
sure must be known, this really requires an additional independent measurement of
absolute pressure.

The manometer in its various forms is ciosely related to the piston gage, since
both are based on the comparison of the unknown pressure force with the gravity
force on a known mass. The manometer differs, however, in that it is self-balancing,
is a deflection rather than a null instrument, and has continuous rather than stepwise
output. The accuracies of deadweight gages and manometers of similar ranges are
quite comparable; however, manometers become unwieldy at high pressures
because of the long liquid columns involved. The U-tube manometer of Fig. 6.4
usually is considered the basic form and has the following relation between input
and output for static conditions:

P D
h= T 6.2)

"Model 20400, DH Instruments, Inc.; P. Delajoud and M. Girard, “The Development of a Digital Read-Out
Primary Pressure Standard,” DH Instruments, Pittsburgh, PA, 1981, www.dhinstruments.com.

2Mettier Instrument Corp., Hightstown, NJ, www.mt.com/pro.
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Pressure standard using electromagnetic balance. The digital standard is made up of
a piston-cylinder measuring element (A + a) and an electronic dynamometer

(B) manufactured Mettler Instrument.

Measuring element (A + a):

1. Piston in tungsten carbide
2. Cylinder in tungsten carbide
3. Cylinder retaining nut
4. Piston head
S. Ball in tungsten carbide
6. Ball bearing to center the ball (5)
7. Drive bearing
8. Retaining ring for ball (5)

9. Rotation mechanism housing

10. Piston-cylinder housing

11. Acrylic sight glass

12. Cover

13. Retaining nut

14. O-ring seals

15. Electric drive motor

16. Drive pinion

17. Toothed drive wheel

18. Drive bearing pin

19. Toothed wheel bearings

20. Purge screws

21. Quick-connect system (standard threads
available)

Electronic dynamometer B:

22. Housing

23. 3 pins giving a quick release facility for
the measuring assembly (A + a).
(After 15° rotation on the pins a locking
mechanism secures the measuring
element to the dynamometer.)

24. Force-limiting guide

25. Coupling rod

26. Force-limiting spring

27-28. 2 vibration dampers

29. Force receiving plate

30. 40,000 points, 5-digit display
31. Auto-zero bar

32. 2 leveling screws

33. Bubble level
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Figure 6.4

U-tube manometer.

where g £ Jocal gravity and p £ mass density of manometer fluid. If p, is atmo-
spheric pressure, then £ is a direct measure of p, as a gage pressure. Note that the
cross-sectional area of the tubing (even if not uniform) has no effect. At a given
location (given value of g) the sensitivity depends on only the density of the
manometer fluid. Water and mercury are the most commonly used fluids. To realize
the high accuracy possible with manometers, often a number of corrections must be
applied. When visual reading of the height & is employed, the engraved scale’s
temperature expansion must be considered. The variation of p with temperature for
the manometer fluid used must be corrected and the local value of g determined.
Additional sources of error are found in the nonverticality of the tubes and the diffi-
culty in reading h because of the meniscus formed by capillarity. Considerable care
must be exercised in order to keep inaccuracies as small as 0.01 mmHg for the
overall measurement.!?

A number of practically useful variations on the basic manometer principle are
shown in Fig. 6.5. The cistern or well-type manometer is widely utilized because of
its convenience in requiring reading of only a single leg. The well area is made very
large compared with the tube; thus the zero level moves very little when pressure is
applied. Even this small error is compensated by suitably distorting the length scale.
However, such an arrangement, unlike a U tube, is sensitive to nonuniformity of the
tube cross-sectional area and thus is considered somewhat less accurate.

Given that manometers inherently measure the pressure difference between the
two ends of the liquid column, if one end is at zero absolute pressure, then 4 is an
indication of absolute pressure. This is the principle of the barometer of Fig. 6.5.
Although it is a “single-leg” instrument, high accuracy is achieved by setting the
zero level of the well at the zero level of the scale before each reading is taken. The
pressure in the evacuated portion of the barometer is not really absolute zero, but
rather the vapor pressure of the filling fluid, mercury, at ambient temperature. This
is about 10~ 1b/in? absolute at 70°F and usually is negligible as a correction.

13A. J. Eberlein, “Laboratory Pressure Measurement Requirements for Evaluating the Air Data Computer,”
Aeronaut. Eng. Rev., p. 53, April 1958.



