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Preface

This book is an introduction to the theory of nanostructures. Its main ob-
jectives are twofold: to provide basic concepts for the physics of nano-objects
and to review theoretical methods allowing the predictive simulation of nano-
devices. It covers many important features of nanostructures: electronic struc-
ture, dielectric properties, optical transitions and electronic transport. Each
topic is accompanied by a review of important experimental results in this
field. We have tried to make the book accessible to inexperienced readers
and it only requires basic knowledge in quantum mechanics and in solid state
physics. Whenever possible, each concept is introduced on the basis of simple
models giving rise to analytical results. But we also provide the reader with
the more elaborate theoretical tools required for simulations on computers.
Therefore, this book is intended not only for the students beginning in this
field but also for more experienced researchers.

The context of the book is the rapid expansion of nano-technologies re-
sulting from important research efforts in a wide range of disciplines such as
physics, biology and chemistry. If much work is presently focusing on the elab-
oration, the manipulation and the study of individual nano-objects, a major
challenge for nano-science is to assemble these objects to make new materials
and new devices, opening the door to new technologies. In this context, as the
systems become more and more complex, and because probing the matter at
the nanoscale remains a challenge, theory and simulation play an essential
role in the development of these technologies. A large number of simulation
tools are already available in science and technology but most of them are
not adapted to the nano-world because, at this scale, quantum mechanical
descriptions are usually necessary, and atomistic approaches become increas-
ingly important. Thus, one main objective of the book is to review recent
progress in this domain. We show that ab initio approaches provide accurate
methods to study small systems (<100-1000 atoms). New concepts allow us
to investigate these systems not only in their ground state, but also in their
excited states and out of equilibrium. The domain of application of ab initio
methods also becomes wider thanks to the decreasing size of the systems,
to the increasing power of the computers and to novel algorithms. But these
developments are by far not sufficient enough to cover all the needs, in partic-
ular when the number of atoms in the systems becomes large (2100-1000).
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Thus, most of the problems in nano-science must be investigated using semi-
empirical approaches, and ab initio calculations are used to test or to calibrate
the semi-empirical methods in limiting cases. Therefore, an important part of
the book is devoted to semi-empirical approaches. In particular, we present
recent improvements which greatly enhance their predictive power.

Due to the huge existing literature in this field, we have limited our bib-
liography to what we believe are the most basic papers. It is also clear that
we have not covered all the aspects. For example, we have omitted nano-
magnetism which merits a book of its own.

The book is divided into eight chapters. Chapter 1 gives a general overview
of the basic theoretical methods which allow an understanding of the elec-
tronic properties from condensed matter to molecules and atoms. We present
ab initio descriptions of the electronic systems in their ground state, in par-
ticular those based on the density functional theory, and we review recent ap-
proaches dealing with one-particle and two-particle excitations. Then, semi-
empirical methods are introduced, from the simple effective mass approach
to more elaborate theories such as tight binding and pseudopotential meth-
ods. Chapter 2 provides a general introduction to quantum confined semi-
conductor systems, from two to zero dimensions. We compare different com-
putational techniques and we discuss their advantages and their limits. The
theoretical predictions for quantum confinement effects are reviewed.

Chapter 3 deals with the dielectric properties of nano-objects. Microscopic
methods based on electronic structure calculations are presented. Screening
properties in semiconductor nanostructures are analyzed using both macro-
scopic and microscopic approaches. The concept of local dielectric constant is
introduced and we conclude by discussing the possibility of using the macro-
scopic theory of dielectrics in nano-systems. We also point out the importance
of surface polarization charges at dielectric interfaces for Coulomb interac-
tions in nanostructures.

In Chapter 4, we focus on the description of quasi-particles and excitons,
starting from the simpler methods based on the effective mass theory and
progressing to more complex approaches treating dynamic electronic correla-
tions. Chapter 5 discusses the optical properties of nanostructures. It begins
with the basic theory of the optical transitions, concentrating on problems
specific to nano-objects and including the influence of the electron-phonon
coupling on the optical line-shape. The optical properties of semiconductor
nanocrystals are then reviewed, both for interband and intraband transitions.
Chapter 6 is devoted to hydrogenic impurities and point defects in nanostruc-
tures. In view of the importance of surfaces in small systems, surface dan-
gling bond defects are discussed in detail. The chapter closes with study of
self-trapped excitons showing that their existence is favored by confinement
effects.

Non-radiative processes and relaxation mechanisms are considered in
Chap. 7. The effect of the quantum confinement on the multi-phonon cap-



Preface IX

ture on point defects is studied. We present theoretical formulations of the
Auger recombination in nanostructures and we discuss the importance of
this mechanism by reviewing the experimental evidence. Then we address
the problem of the relaxation of hot carriers in zero-dimensional objects.
In strongly confined systems, phonon-assisted relaxation is slow due to the
phonon bottleneck effect, but we explain why this effect is difficult to observe
due to competitive relaxation mechanisms.

Chapter 8 discusses non-equilibrium transport in nanostructures. We in-
troduce theoretical methods used to simulate current-voltage characteristics.
We start with the regime of weak coupling between the nano-device and
the electron leads, introducing the so-called orthodox theory. Situations of
stronger coupling are investigated using the scattering theory in the indepen-
dent particle approximation. Electron—electron interactions are then consid-
ered in mean-field approaches. The limits of these methods are analyzed at
the end of the chapter.

Finally, we are greatly indebted to G. Allan for a long and fruitful col-
laboration. We are grateful to all our colleagues and students for discussions
and for their contributions. We acknowledge support from the “Centre Na-
tional de la Recherche Scientifique” (CNRS) and from the “Institut Supérieur
d’Electronique et du Numérique” (ISEN).

Lille, Paris, C. Delerue
December 2003 M. Lannoo
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1 General Basis for Computations
and Theoretical Models

This chapter describes theoretical concepts and tools used to calculate the
electronic structure of materials. We first present ab initio methods which
are able to describe the systems in their ground state, in particular those
based on the density functional theory. Introducing the concept of quasi-
particles, we show that excitations in the systems can be accurately described
as excitations of single particles provided that electron—electron interactions
are renormalized by the coupling to long-range electronic oscillations, i.e. to
plasmons. We then review the main semi-empirical methods used to study
the electronic structure of nanostructures.

1.1 Ab initio One-Particle Theories
for the Ground State

This section is an attempt to summarize the basic methods which have al-
lowed an understanding of a wide range of electronic properties not only in
condensed matter but also in molecules. The basic difficulty is due to the
inter-electronic repulsions which prevent from finding any tractable solution
to the general N electron problem. One is then bound to find approximate
solutions. Historically most of these have tried to reduce this problem to a
set of one-particle Schrodinger equations. Of course such a procedure is not
exact and one must find the best one-particle wave functions via a minimiza-
tion procedure based on the variational principle. This one is however valid
for the ground state of the system and can only be applied exceptionally to
excited states for which the total wave function is orthogonal to the ground
state.

The general solution of the N electron system must be antisymmetric
under all permutations of pairs of electron coordinates. We start by applying
the constraint to the case of N non interacting electrons. We review on that
basis the Hartree and Hartree-Fock approximations and give a qualitative
discussion of correlation effects. We then pay special attention to the so-
called density functional theories of which the most popular one is the local
density approximation (LDA). These have the advantage of leading to a set
of well-defined one-particle equations, much simpler to solve than in Hartree—
Fock theory, and to provide at the same time fairly accurate predictions for
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the ground state properties. We end up this section with a discussion of the
meaning and accuracy of the one-particle eigenvalues for the prediction of
excitation energies.

1.1.1 Non-interacting IN Electron System

We start by discussing a hypothetical system of independent electrons for
which the Hamiltonian can be written

N
H=3 h(z,), (1)
t=]

where x; contains both space and spin coordinates (x; = 7;,&). Each indi-
vidual Hamiltonian h(z;) is identical and has the same set of solutions:

hx)uk(x) = epur(x) . (1.2)

For such a simple situation the eigenstate i of H with energy E can be
obtained as a simple product of one-electron states (also called spin—orbitals)

N
¥ =[] welxx), (1.3)
k=1

its energy being obtained as the sum of the corresponding eigenvalues:

N
B=Y . (1.4)
k=1

Although these solutions are mathematically exact they are not accept-
able for the N electron system since i given by (1.3) is not antisymmetric.
The way to solve this difficulty is to realize that any other simple product ¥y,
obtained from 1 by a simple permutation of x; and x; has the same energy
E and is thus degenerate with . The problem is thus to find the linear com-
bination ¥ags of ¥ and all ¥, that is antisymmetric under all permutation
x) > x;. This turns out to be a determinant called the Slater determinant
defined by:

ul(ml) 'lL](mN)
1 ug(x1) ... uz(xn)

Yas = Wi : (1.5)
uN(zl) uN(mN)

This determinant still has the energy given by (1.4). The ground state of
the system is thus obtained by choosing for 1¥as the N one-particle states u;
which have the lowest eigenvalues €,. However in doing this one must take
care of the fact that the Slater determinant ¥as vanishes when two u, are
taken identical. This is the Pauli exclusion principle according to which two
electrons cannot be in the same quantum state. If h(x) is spin independent
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the spin orbitals can be factorized as a product of a space part ug(r) and a
spin part X (&)

uka(m) = Uk(r)Xa(f) ) (16)

where 7 is the position vector, £ the spin variable and ¢ =1 or |. In such a case
the Pauli principle states that two electrons can be in the same orbital state
if they have opposite spin. The ground state of the system is thus obtained
by filling all lowest one-electron states with two electrons with opposite spin
per state.

1.1.2 The Hartree Approximation

The full Hamiltonian of the interacting N electron system is

1

H:Zh(mk)+izv(rk,rk')+VNN ; (1.7)
k kk'

where the one-electron part h is the sum of the kinetic energy and the

Coulomb interaction with the nuclei, v is the electron—electron interaction

e?

V(Th, Pre) = (1.8)

lre — 7]
and Vnn is the Coulomb energy due to the interaction between the nuclei
(throughout this chapter we use electrostatic units, i.e. 4wy = 1). It is of
course the existence of the terms (1.8) which prevents from factorizing H
and getting a simple solution as in the case of independent electrons. A first
step towards an approximate solution to this complex problem came from
the intuitive idea of Hartree [1-3] who considered that each electron could
be treated separately as moving in the field of the nuclei plus the average
electrostatic field due to the other electrons. This corresponds to writing an
individual Schrédinger equation

2w | welen) = kun@e)  (19)

h(zk) + Z /v(rk,rkf)lw(mk')

k#k’

for each of the IV electrons of the system. To connect with the following we
rewrite this equation in a more standard form

[h(e) + Vi) — 2! ()] uk(@) = exuk() (1.10)

which is obtained by adding and subtracting the term k = &’ in (1.9). Vu(x)
is the so-called Hartree potential, i.e. the electrostatic potential due to the
total density n(x) (including the term k = k’):

Vi(x) = /v('r,'r’)n(w’)dm’ .
n(z) = nlu=)?. (1.11)
1
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The n; introduced in the definition of n(x) are the occupation numbers,
n; = 1 if there is an electron in w;, n; = 0 in the opposite case. The last term
I39!l is the self-interaction correction, removing the unphysical term k& = k'
introduced in the definition of Vy:

2l (x) = /v(r,r')luk(m’)IQdm’. (1.12)

The Hartree equations coupled with a spherical averaging of the potential
in (1.10) have provided a quite accurate picture of the electronic structure
of isolated atoms. They are a basis for understanding the periodic table of
the elements and also produce good electron densities n(x) as compared with
those obtained experimentally from X-ray scattering.

The Hartree equations have been put on firm theoretical grounds by use
of the variational principle [2,4]. For this one takes as trial wave function 1
the simplest form one can obtain for independent electrons, without taking
account of the antisymmetry. This one is thus the simple product of spin
orbitals given by (1.3). The optimized v belonging to this family of wave
functions must minimize the energy given by the expectation value of H for
this wave function. This is equivalent to solving

(6$|E — H|yp) =0, (1.13)

where v is an infinitesimally small variation of 1. If one now varies each
uy separately in (1.13) by duy one directly gets the set of equations (1.9) or
(1.10).

The Hartree method then succeeds in reducing approximately the N elec-
tron problem to a set of N one-particle equations. However the price to pay is
that the potential energy in each equation (1.10,1.11) contains the unknown
quantity n(z’) — |uk(x’)|?. One must then solve these equations iteratively
introducing at the start some guess functions for the |ui|? in the potential
energy, solve the equations, re-inject the solutions for the |ux|? (or some
weighted averages) into the potential energy and so on (Fig. 1.1). The pro-

Density —® Potential

Y

f ) Fig. 1.1. The electron den-
sity and the potential must
be calculated self-consistently
taking into account the occu-
L J pation of the levels

Schrodinger equation

Density --— s .
Y Equilibrium statistics

A
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cedure stops when self-consistency, i.e. the identity between the input and
output, is achieved.

1.1.3 The Hartree—Fock Approximation

This is less intuitive than the Hartree method and must be directly intro-
duced from a variational treatment. The starting point is similar except that
instead of choosing for 9 a simple product function one now makes use of
Slater determinant of the form (1.5) in which the spin orbitals are assumed
orthonormal. The total energy E = (y|H|y) of such a determinant can be
shown [2, 3,5, 6] to be given by

E= Zn;\(k|h|k ann, ((kl|v|kl) — (kl|v|lk)) + Van (1.14)
with:
(kIhlk) = [ ui(@h(@)us()dz

(ijlv|kl) = /u:(m)u;(z')v(r,r’)uk(m)u[(az')dxdw'. (1.15)

We want to minimize E with respect to the uy under the constraint that
these remain orthonormal, i.e. [ uf(x)u(x)dx = dx. This can be achieved
via the method of Lagrange multipliers. If we apply a first order change duj
this requires that the quantity 6E—3",, A f dup (z)w(xz)de = 0, Vou;. This
leads to the set of one-particle equations:

[h(m) +y m / v(r,r')lu,(w’)]%w'} ug ()
l

- Zn, [/v(r ) (z ')uk(az')dw'} w(zx) = Z/\k[ul(a:) . (1.16)
1

This can be simplified by notieing that a unitary transformation applied
to the Slater determinant does not modify it apart from a phase factor and
thus does not change the structure of the equations. It is thus possible to
rewrite (1.16) under diagonal from, i.e. with:

/\kl = Ek(sk[ . (1.17)

For obvious reasons, the last term on the left hand side of (1.16) is called
the exchange term, the second one being the Hartree potential V3. We now
rewrite (1.16) using (1.17) under a form which will be generalized in the
following:

[h(z) + Vi (x)|ur(x) + / Pz, " Yup(z')dz' = erup(x) , (1.18)
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X« corresponding to the non-local exchange potential:

(e, x) = —v(r, 7)Y nyu (@) (x') . (1.19)
l

The | = k term in (1.19) when injected into (1.18) directly corresponds
to the self-interaction Z}' of (1.12). The Hartree-Fock (HF) procedure thus
reproduces the Hartree equations plus corrective exchange terms for [ # k.

When the spin orbitals are factorized as in (1.6) one can perform the
integration over the spin variables directly in the HF equations. In that case
the result is that the integrations over &’ can be replaced by integrations over
r’ at the condition of multiplying Vi by a factor 2 for spin degeneracy while
the exchange term remains unchanged since opposite spins give a vanishing
contribution to (1.16).

While the HF approximation improves over the Hartree one, especially
for magnetic properties, it does not provide an accurate enough technique for
the ground state properties as well as the excitation energies. This is due to
correlation effects which are important in both cases as will be discussed in
the following. Furthermore HF leads to heavy calculations due to the non-
local character of the exchange term.

1.1.4 Correlations and Exchange—Correlation Hole

By definition correlation effects are the contributions not included in the HF
approximation. Conceptually the simplest way to include them is to use the
method of configuration interaction (CI). The principle of the CI technique is
to expand the eigenstates of the interacting IV electron system on the basis of
the Slater determinants built from an infinite set of orthonormal one-particle
spin orbitals :

Y= cathspm - (1.20)

Quite naturally the starting point in such an expansion could be the
ground state HF determinant, the others being built by substitution of excited
HF spin orbitals. However the CI technique is quite heavy and does not
converge rapidly so that it can be applied only to small molecules (typically
10 atoms maximum). This means that it cannot be applied to solids. We thus
now discuss the only case where practically exact results have been obtained
for infinite systems, i.e. the free electron gas.

The free electron gas is an idealized model of simple metals in which the
nuclear charges are smeared out to produce a uniform positive background
charge density. This one is fully compensated by the uniform neutralizing
electron density. This produces a constant zero potential in all space. The
solutions of the one-particle Hartree equations are



