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PREFACE

This book has been written in response to suggestions from
friends who have asked for a text-book on the subject adapted
more particularly to the needs of candidates for Part I of the
Mathematical Tripos. <

A complete study of the theory of electricity and magnetism,
as a logical mathematical development from experimental
data, requires a.’knciwledge of the methods of mathematical
analysis far beyond what can reasonably be expected from
most readers of an elementary text-book. The knowledge of
pure mathematics assumed in the present volume amounts to
little more than some elementary calculus and a few properties
of vectors. The ground is restricted by this limitation. It
covers the schedule for Part I of the Tripos, including the
fundamental principles of electrostatics, Gauss’s theorem,
Laplace’s equation, systems of conductors, homogeneous
dielectrics and the theory of images; steady currents in wires;
elementary theory of the magnetic field and the elementary
facts about the magnetic fields of steady currents. There are
also short chapters on induced magnetism and induction of
currents. '

From one standpoint it would be preferable that a book
on a branch of Natural Philosophy should consist of a con-
tinuous logical development uninterrupted by ‘examples’.
But experience seems to indicate that mathematical prin-
ciples are best understood by making attempts to apply
them ; and, as the purpose of this book is didactic, T have had
no hesitation in interspersing examples through the chapters
and giving the solutions of some of them. The text is based
upon lectures given at intervals over a period of many years,
and the examples are part of a collection which I began to
make for the use of my pupils about forty years ago, drawn
from Tripos and College Examination papers.

Asregardsnotation, I felt much hesitation about abandoning
the use of V for the potential of an electrostatic field; but



vi PREFAOE

the custom of using a Greek letter to denote the scalar
potential of a vector field has become general, and the matter
was decided for me when I found ‘E= —grad ¢’ in the
Cambridge syllabus. : o : :
I am greatly indebted to Mr E. Cunningham of St J ohn’s
College for reading a large part of the text and making many
appropriate criticisms and useful suggestions; and also to
Dr S. Verblunsky of the University of Manchester for reading
and correcting the proofs, and to the printers and readers of -
the University Press for careful composition and correction.

A.8.R.

Cambridge
November 1938 -



Table of Units

0.a.8. absolute unit of force =1 dyne
0.6.8. absolute unit of work or energy =1 erg

ELECTRICAL UNITS

Equivalent absolute
C.G.8. units
Practical unite
Electrostatic | 1:eetro-
magnetic
gha.rge ; ) 1 coulomb 3x10° 10=2
otential or electro-\
motive force fd e 3elix10=2 108
Current 1 ampére 3 x 10° 10—
Resistance 1 ohm 320 10°
Capacity 1 farad 3% 101 1952
Inductance 1 henry 3-2x 10~ 10°¢
Rate of working 1 watt 107 107

One microfarad is one-millionth of a farad.

An electromotive force of 1 volt drives a current of 1 ampére through
a resistance of 1 ohm and work is then being done at the rate of 1 watt
or 107 ergs per second.
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Chapter I
PRELIMINARY MATHEMATICS

1-1. We propose in this chapter to give a brief account of
some mathematical ideas with which the reader must be
familiar in order to be able to understand what follows in this
volume. :

1-2. Surface and volume integrals. Though the process
of evaluating surface and volume integrals in general involves
double or triple integration and must be learnt from books on
Analysis, yet in theoretical work in Applied Mathematics
considerable use is made of curface and volume integrals
without evaluation; and we propose here merely to explain
what is implied when such symbols as :

ff (#,9,2)dS and |f(xz,y,2)dv

are used to denote integration over a surface and throughout
a volume.

: ‘ e
A definite integral of a function of one variable, sayf f(z)dz,
2 Ja

may be defined thus: let the interval from a to b on the x-axis
be divided into any number of sub-intervals 8,, &, ... 9,, and
let f, denote the value of f(x) at some point on 3,; let the sum -

3 £.5, be formed and let the number « be increased without
r=1 2 . g c

limit. Then, provided that the limit as % —oc0 of* 5 [, exists -
: : . r=1

and is independent of the method of division into sub-

intervals and of the choice of the point on 8, at which the value

of f(z) is taken, this limit is the definite integral of f(z) from

a to b.

In the same way we may define ff (2,9,2)dS over a given -

surface; let the given surface be divided into any number of
small parts &, , 3,, ... 3, and let f, denote the value of f(x,y,2)

REM I
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2 n
at some point on §,, then the limit agsn—+>co of X f,8,, provided
r=1
the limit exists under the same conditions as aforesaid, is

defined to be the integralf f(z,y,2)d8 over the given surface.

Any difficulty as to the precise meaning to be attributed to
‘area of a curved surface’ may be avoided thus: after choosing
the point on each sub-division 8, of the surface at which the
value of f(z,y,2) is taken, project this element of surface on

. to the tangent plane at the chosen point, and take the plane
projection of the element as the measure of 8, in forming the

~ The integral J.f (¢,y,2)dv through a given volume may be .
defined in the same way.

1-3.. Solid angles. The solid angle of a cone is measured
by the area intercepted by the cone on the surface of a sphere of
unit radius having its centre at the vertex of the cone. i

The solid angle subtended at a point by a surface of any form .
- is measured by the solid angle of the cone whose vertex is at
the given point and whose base is the given surfate,

Let PP’ be a small element of area dS which subtends a
solid angle dw at O. '

Let the normal to diS make an acute angle y with OP and let
OP=r. Then the cross-section at P of the cone which PP’
subtends at O is d8 cosy, and this cross-section and the small
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area dw mtercepted on the unit sphere are similar ﬁgures 80

that dScosy:dw=72:1.
Whence dew=(dS cosy) /r’} ( l) :
e Bitabenia ) .

It follows that the area of a finite surface can be represented
as an integral over a spherical surface, thus

S=|r280cydw ..ccovvveiiniinan. 42

with suitable limits of integration.

- 131, dw in polar co-ordinates. dw is an element of the
surface of a unit sphere. Let the
element be PQRS bounded by
meridians and small circles, where - .
the amgular co-ordinates of P are
0, ¢. Then since the arc PS sub-
tends an angle d¢ at the centre of
a circle of radius sinf, therefore
- P8 =sinf d¢; and PQ=db, sothat
dw=P¢.P8=sin6dids.
1:32. Solidangleof arightcircularcone. A narrow zone of
a sphere of radius @ cut off between parallel planes may be
regarded as a circular band of breadth adf and radius asiné,
so0 that its area = 2ma®sin 646
= — 2nradx, where x=a cos 0.

7

Hence the arga of a zone of finite breadth
=2ma (x, —x5)
= circumference of sphere x axial breadth of zone.
A right circular cone BOC of vertical angle 2« interecis 6

X2
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a unit sphere of centre 0 a cap B'A’C” of height M A’ =1 — cosa

and Il COBR) s e (1),

80 that this is the measure of the solid angle of the cone.’

1-33. The idea of the solid angle may easily be extended, if
we observe that any bounded area on a unit sphere may be
regarded as measuring a solid angle.
Thus a lune bounded by semi-circles
ABD, ACD may be taken as measur-
ing the solid angle between the
diametral planes 4 BD, ACD.

Let « be the angle between these
planes. Because of the symmetry
about AD, it is evident that

area of lune : area of sphere =a: 2.

But the area of the sphere is 4, so
that the area of the lune is 2«; or the solid angle between two
planes is twice their inclination to one another.

1:4. Scalar functions of position and their gradients. Let

- ¢(,y,2) be a continuous single-valued function of the position

of a point in some region of space. Suppose that the function
¢ is not constant throughout any region, so that the equation -

& (x,y,2) = const.

represents a surface. We assume that through each point of
the region in which ¢ is defined, there passes ‘a surface
¢ =const. We also assume ' .

2 N p
that at every point P on —T

this surface there is a &
definite normal PN and P f‘.:“"'&‘
that the tangent plane at P ‘ Fhe:

varies continuously with
the position of P on the surface.
From the definition of ¢ two surfaces

$(x,9,2)=a and ¢(z,y,2)=b
cannot intersect; for if they had a common point it would be



1-4] GRADIENT b

a point at which ¢ had more than one value, in contradiction
to the hypothesis that ¢ is a single-valued function. :
Consider two neighbouring surfaces
| ¢=a and ¢=a+da.
Let P, P’ be points on each and let the normal at P to ¢=a
meet ¢ =a+8a in N. For small values of a PN will also be

normal to ¢=a+da. - :
Then using ¢, to denote the value of ¢ at P, we have

br—op_ 80 _dy—¢p_¢y--¢p PN

PE . PP PP PN ‘PP
=<£1v ép :
r

~—N—— cosd,
where 6 is the angle NPP’. :
Now if PP’ =8s and PN =n, and we make Sa and therefore
s and dn tend to zero, the limit of (¢, — ¢,)/ PP’ is the rate of
; Y
08
similarly the limit of (¢y—,)/ PN is the rate of increase of ¢

increase of ¢ in the direction 8s and is denoted by ; and

in the normal direction dn and is denoted by % , and we have

Thus we have proved that the space rate of increase of ¢ in
any direction 8s is the component in that direction of its space
rate of increase in the direction normal to the surface ¢ = const.;
or that if we construct a vector of magnitude 8¢/0x in direction
PN, then the component of this vector in any direction is the
space rate of increase of ¢ in that direction.

The vector o¢/on with its proper direction is called the
gradient of ¢ and written grad ¢.

To recapitulate: ¢ is a continuous scalar function of position
having a definite single value at each point of a certain region
of space, and the gradient of ¢ is defined in this way: through
any point P in the region there passes a surface ¢ = const., then
a vector normal to this surface at P whose magnitude is the
space rate of increase of ¢ in this normal direction is defined to



6 FLUX OF A VECTOR [1-4-

be the gradient of ¢ at P, and it has the property that its com-
ponent in any direction gives the space rate of increase of ¢
@t P in that direction. It is clear that the gradient measures
the greatest rate of increase of ¢ at a point.

1:5. A vector field. If to every point of a given region
there corresponds a definite vector A, generally varying its
magnitude and direction from point to point, then the region
is called a vector field, or the field of the vector A; e.g. electric
field, magnetic field. :

1:51. Flux of a vector. Ifa surface S be drawn in the field
of a vector A and 4, denotes the eomponent of A normal to

an element d.S of the surface, then the integral fA d8 is called

the Jlux of A through 8. Since a surface has two sides. the sense
of the normal must be taken into account, and the sign of the
flux is changed when the sense of the normal is changed. The
flux of a vector through a surface is clearly a scalar magnitude.

1-52. Divergence of a vector fleld. Let A denote a
vector field which has no discontinuities throughout a given
region of space. Let 8v denote any small element of volume

containing a pomt P in the region and let fA d8 denote the

outward flux of A through s
the bounda,ry of 3v, then the -

' fA s
limit as Sv—0 of
O'U

. is defined to be th: diver- y
gence of A at the point P
and denoted by div A.

It can be shewn that, %
subject to certain conditions, this limit is independent of
~ the shape of the element of volume v, but for our present

purpose, which is to obtain a Cartesian form for div A, it
will suffice to caloulate the limit for a rectangular element
-of volume. Using rectangular axes let P be the centre (z,¥,2)

ziv|Z
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of a small rectangular parallelepiped with edges parallel to
the axes of lengths 8z, 8y, 82.

Let the vector A have components 4,, 4,, 4, para]lel to
the axes at P.

Consider the contributions of the faces of the parallelepiped
to the flux of the vector out of the element of volume. The two
faces parallel to the zy plane are of area 3z 3y, the component
of A normal to these at the centre (z, y, z) of the parallelepiped
is 4,. The co-ordinates of the centres M, N of these faces are
z.Y, z——§8z and 2,9, 2+ }92; so that if the magnitude of 4,
at P is f(x,y,2); its magnitude at M is f(x,y,z—382) or

flz, y, 2)— fb‘z to the first power of 3z, ie. 4 —laa‘: 3z,
and s1mﬂa.r1y the magnitude at N is 4.+ 2854 3z, and both

these components are in the direction Oz. Then assuming
what can easily be proved, that, subject to certain conditions,
the average value of the component over each small rectangle
is the value at its centre, the contributions of these two faces
to the total outward flux are

(A3 ese) soty and (4,+5570) 8aby,
0z 2 0z
giving a sum aaA 2 5 5y 8z,

Finding similarly the contributions of the other two pairs
of faces, we have for the total outward flux
04, 04, 04,
( e +T+T)8 28y 62
to this order of small quantities.

But the volume v of the small element is 823y &z, so that in
accordance with our definition, dividing the flux by the volume
and proceeding to the limit in which the terms of higher order
in the numerator disappear, we have

24, 04, 04,
leA—*é;+ a}';'f‘-—é; ............... (1).



