g ~ Texts and Monographs in Computer Science

Object-Orlented
Database
Programming

Suad Alagi¢

Springer-Verlag
World Publishing Corp

Suad Alagié

Object-Oriented
Daiabase
Programming

With 84 lilustrations

= -

i

Springer-Verlag ,
World Publishing Corp

Suad Alagié¢

Department of Informatics
Faculty of Electrical Engineering
University of Sarajevo

71000 Sarajevo, Lukavica
Yugoslavia ¢

Series Editor

David Gries

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853

USA

Library of Congress Cataloging-in-Publication Data
Alagi¢. Suad.
Object-oriented database programming/Suad Alagic
p. ecm.—(Texts and monogiaphs In computer science)
Bibliography: p. ¢ T
Includes indexes.
1. Database management. 2., Obj#t-oriedied progranitming (Computer
science) 1. Title. 1l. Series.
QAT76.9.D3A46 1988
005.74—dc 19 88-13988

© !989 by Springer-Verlag New York Inc.

Al rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY
10010, USA). except for briel excerpts in connection with reviews or scholarly analysis,
Use in connection with any form of information storage and retrieval. electronic adaptation,
computer software. or by similar or dissimilar methodology now known or hereafter developed
is forbidden.

The use of general descriptive names. trade names. trademarks. etc., in this publication,
even if the former are not especially identified. is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Reprinted by World Publishing Corporation, Beijing, 1992
for distribution and sale in The People’s Republic of China only
ISBN 7-5062-1275-7)

ISBN 0—387-96754-0 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-96754-0 Springer-Verlag Berlin Heidelberg New York

Preface

The major topic of this book is the integration of data and programming
languages and the associated methodologies. To my knowledge, this is
the first book on modern programming languages and programming meth-
odology devoted entirely to database application environmeénts. At the
same time, it is written with the goal of reconciling the relational and
object-oriented approaches to database management.

One of the reasons that influenced my decision to write this book is
my dissatisfaction with the fact that the existing books on programming
methodology and the associated concepts, techniques, and programming
language notation are largely based on mathematical problems and math-
ematically oriented algorithms. As such, they give the impression that
modern program structures, associated technigues, and methodologies,
not to speak of the formal ones, are applicable only to problems of that
sort. Although important, such problems are of limited applicability and.
scale. This does not apply to books in which modern concepts, techniques,
methodologies, and programming language notation are applied to systems
programming. But, even so, this does not demonstrate that in entirely
application-oriented problems—those in which modern computer tech-
nology is most widely used—modern programming methodology is just
as important,

This book is meant to be a step toward providing a more convincing
support of such a claim and, thus, is based entirely on common, what one
might call business-oriented, problems in which database technology has
been successfully used. However, as far as I know, that usage has littie
to do with what in my opinion belongs to modern trends in programming
languages and programming methodology. From the research point of

Preface

view, the integration of data and programming languages, and the asso-
clated methodologies, is certainly the major goal of this book. But, at the
same tinme, its goal is also to demonstrate that such an integration has
very important large-scale implications.

Another important reason for my decision to write this book is the
situation in the database arca where the proliferation of high-level, non-
procedural tanguages (such as relational languages) and other nonproce-
dural tools has established another wrong impression in which again, al-
though for a diffcrent reason, the results in the development of modern
programming language concepts, notation, and the associaied method-
ologics do not seem to matier very much since so many things can be
done nonprocedurally anyhow. Application programmers are offered in-
terfuces of modern, high-level, nonprocedural languages and quite often
old-fashioned programming-level tools, wherce the interface of the two is
hardly (if ever) conceptually and notationally attractive.

Although modern nonprocedural database tools allow attractive solu-
tions to problems of increasing complexity, this book demonstrates that
there arc many of them that require a good solution on the programming
language Ievel. Furthermore, some common application-oriented problems
require the full power of integrated data and programming languages that
comes from concepts like relational model and recursive procedures, ex-
ception handling, and attractive screen management—of course, with the
condition that we apply the established programming methodology criteria
to procedural solutions of such problems having to do with elegant, mod-
ular structure, correctness, adaptability, efficiency, etc.

This does not mean that | am not in favor of nonprocedural tools. In
fact, we have carried oul the development of such tools associated and
tied in with the programming language notation used in this book very
far, in order to implement a complete database pxog,lammmg environment.
The existence of such nonprocedural tools influenced the decisions about
the required features of the database programming languag,e used in this
book considerably.

As far as the notation is concerned, the database programming language
used in this book has been derived from Modula-2 and is thus called
MODULEX. It differs considerably from other proposed database ex-
tensions of languages like Pascal and Modula, as well as from other pro-
posed database programming languages. Whereas the previous proposed
extensions of Pascal and Modula, such as Pascal/R and Modula/R, are
relational oriented, MODULEX is object-action oricnted. 1t supports the
relational model as a particular case, and explores the concepts of the
definition and the implementation modules as defined in Modula-2 to obtain
a simple and powerful object-oriented extension of that model:

In spite of the fact that all the power of the relational model and the
associated languages is offered in MODULEX, as well as its object-ori-
ented extension in terms of modules, the programming language is kept

Preface

small and simple, just as Modula-2 is. The adopted extensions are kept
to those that are absolutely necessary, and consequently, the book should
be simple for readers and programmers with some familiarity with lan-
guages like Pascal and Modula. This approach to the programming lan-
guage design makes MODULEX quite different from other proposed da-
tabase programming languages. Indeed, rather than adding a number of
new and fancy features that such languages have, MODULEX explores
the power of the existing programming language concepts. The concept
of a module as defined in Modula-2 plays a crucial role in this respect,
and its appropriate intcrpretation leads to a particularly simple object-
oriented cxtension of the relational model.

Representation of objects as modules is one of the major original con-
tributions of this book. MODULEX is essentially designed by adding the
entity set type and the associated action-composition rules (such as
foreach) to the standard collection of programming language abstractions.
These extensions are defined in such a way that they offer the power of
the relational model and the relational languages in the programming lan-
guage framework. Imposing modules on such a unified relational and pro-
gramming environment produces the desired object-action-oriented en-
vironment,

In view of the above described approach to the object-oriented database
programming language and its environment, the programming methodology
presented in this book is, of course, object oriented or-abstract data-type
oriented. By this we mean that the cornerstone of our approach are object
types whose properties and actions applicable to instances of those types
are encapsulated in the definition modules of those objects. In comparison
with the relational approach, users of those objects are still permitted (or
may be allowed if appropriate) to state arbitrarily complex queries upon
such objects, but other applicable actions are restricted to those specified
in the definition modules of those object types. The actual representation
(implementation) of such objects and their associated actions is scparated
from their definition and from their users as well. The object types in
typical database application environments quite often have relational
representation.

Conceptual modeling of application environments presented in this book
is based on a collection of standard abstractions: aggregation, generali-
zation, covering, partitioning, and recursion. They all have simple algebraic
interpretation, as do the usual data abstractions in Pascal-like languages.
At the same time, the relationship with the associated action-composition
rules in such languages is easily esfablished. The relational representation
of the chosen collection of standard abstractions enriched with those rules
and the structure of modules has been developed carefully in this book
in an object-oriented style.

The graphical representation is a departure from what is customary in
databases, and is based on the algebraic interpretation of standard ab-

Preface

stractions; so, an arrow simply denpotes a function—what could be simpler
and more consistent than that?

There is no question that the chosen framework of a single, small, and
simple database programming language has its limitations, in terms of pre-
sentation of some important features of modern database systems. Al-
though many typical integrity constraints are specified nonprocedurally
in the MODULEX screen language, particularly those related to the re-
lational representation of standard abstractions, the programming-lan-
guage-based presentation in this book demonstrates how they are enforced
procedurally.

This explains the role of the relational model in our approach. In fact,
one of our major goals was to reconcile the relational and object-oriented
approaches, and I have just given a brief and very general description of
how this is achieved. Thus, in spite of the object-oriented methodology
applied in this book, the presented material is to a large extent also re-
lational-oriented programming methodology.

Perhaps it is a pity that this book is not more formal (i.e., mathematical)
since virtually all the presented material has nice and sound mathematical
foundation. This applies to standard abstractions, the relational model,
action-composition rules, modules, and formal verification techniques for
actions. Only the very basic mathematical concepts underlying the pre-
sented material in its entirety are given, in an informal manner, and I must
admit that the reason for this is my desire to reach a wider audience, who
may be uninterested in the underlying mathematical concepts. Therefore,
the underlying concepts are used only when necessary in order to make
the definitions more precise and clear. The basic formal theory of the
relational model is also presented under these same limitations.

I hope this book presents a new way of teaching about databases. In-
deed, introductory programming language courses based on languages like
Pascal and Modula-2, and the familiarity with the very basic notions of
modern mathematics are all that is required to use this book. It is my
hope that readers with this background will find this book appealing, since
it is entirely based on the programming language notation. | also hope
this book will present some of the most important conceptual database
problems to people whose work is in programming languages and pro-
gramming methodology, in a manner that is much more appealing to them
than the way databases are usually taught. The research on integration
of data and programming languages, and the associated systems, has cer-
tainly a lot to offer to both database and programming language areas. It
opens up a large number of new research problemq whose solutions have
practical large-scale implications.

Perhaps the exercises are the best part of this book. They expand the
material in the main body of the text with a number of more advanced
concepts, techniques, and methodologies. Some of the most attractive
and rewarding examples and problems are given in the exercises. Working
them out is the only way to master the underlying methodology presented

Preface -

in this book and enables one to make quite a number of discoveries on
one’s own. The presented selection is large enough so that lecturers
teaching a course on this subject can make the appropriate choice of as-
signments to their students.

This book has been written alongside the development of the
MNDULEX database programming environment, which, in addition to
the compiler of the database programming language, has as its major fea-
ture the associated high-level, object-oriented, definition, query, manip-
ulation. and control screen language. The MODULEX screen language
is designed in such a way that it fits in the unified object-oriented frame-
work, based on the database programming language presented in this book.
In addition to object-oriented and relational-oriented queries, it supports
conceptual design in the sense that it makes the automatic generation of
the definition and the implementation modules of object types possible,
together with the associated actions from the specifications given in the
screen language. At the completion of this book, the MODULEX database
programming environment has already been running on the VAX, and its
reimplementation on the personal computer is also planned. Readers in-
terested in the described software tool should contact the publisher (or
the author) of this book for further details. -

The material prescn.ed in this book, as well as the MODULEX software
environment, grew out of my research project ‘‘Extended Relational Da-
tabase Programming Environment,” which was support by the National
Science Foundation under grant JFP/708. 1 would like to express my sin-
cere appreciation for the work done by my research assistants Miroslav
Kandi¢ and Dragan Jurkovi¢. This applies not only to their contributions
to the implementation of the MODULEX system, but also to their ex-
tremely valuable help in reviewing and editing the final version of the
manuscript.

" Sarajevo, Yugoslavia SUAD ALAGIC

{Continued)
Texts and Monographs in Computer Science

Robert N, Moll, Michael A. Arbib, and A. J. Kfoury
An Introduction to Formal Language Theory

Franco P. Preparata and Michael lan Shamos
Computational Geometry: An Introduction

Brian Randell, Ed.
The Origins of Digital Computers: Selected Papers

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series

Jeffrey R. Sampson
Adaptive Information Processing: An Introductory Survey

William M. Waite and Gerhard Goos
Compifer Construction

Niklaus Wirth
Programming in Modula-2

Contents

Preface

Introduction

I Objects

2 Actions

3 Abstractions
4 Environments

Chapter 1

Data and Actions

Simple Types, Records, and Entity Sets

Variables, Constants, and Expressions

Sample Databasc: Project Management

The Relational Model of Data

Simple and Composite Actions

Arrays

Small Set Types

Schema Synthesis Algorithms

Exercises: Repetitive Structures; Nested Structures; Normal Forms;
Integrity Constraints; Aclion Semantics; Views

Bibliographical Notes

0N AW -

Chapter 2
Procedures and Modules

1 .Procedure Declaration and Procedure Call
2 Scopes: Local and Global Objects

-

;DC&—

21
21
26
28
32
39
48
Ay
55

60
69

7

T
7

Contents

Variable and Value Parameters

Proceduré Types and Parameters

Recursive Procedures .

Modules: Definition and Implementation of Objects

Levels of Object Type Safety

Export-Import Rules }

Exercises: Traversal Recursion; Computed Attribute Values; Open Array
Parameters and String Handling; Circuit Design; Task Network

Bibliographical Notes

[- B Be WV I -

Chapter 3
Design Meﬂ)odology

Abstraction, Localization, Refinement, and Incremental Design

Sample Object-Oriented Top-Down Design: Project Management

Action and Transaction Development

Object-Oriented Versus Relational-Oriented Procedures

Environments, Submodels, and Access Rights

Design of Recursive Transactions

Exercises: Action and Transaction Modeling: Exception Handling;
Exceptional Properties; Expert Systems; Optimal Selection: Referential
Integrity and Context-Dependent Actions

Bibliographical Notes

RN A B W N e

Chapter 4
Standard Abstractions

Aggregation

Generalization

Recursion and Covering

Sample Database: Assembly of Products

A Complex Application Module
ixercises: Aggregation; Generalization; Covering; Molecular Abstraction;
Hidden Relational Representation; Opaque Export; Recursion
Bibliographical Notes

T B W N

Chapter 5
lnput/Output Programmlng

1., Standard Input/Output Programming
Input Data Validation
Screen-Oriented 1/0 .
Sample /O Programming: Flight-Reservation Application
Sequential Files
Files, Images, and Streams
Low-Level Application-Oriented Programming

Exercises: Text Files and Character Streams; Access Rights;
Nonstandard 1/0 Devices; Complex Screen Management; Pasteboards
and Virtual Displays; File Handlers

Bibliographical Notes

e NV G,

82
87
90
94
10t
108

110
122

123

123
133
143
151
157
166

178
187

189

189
204
216 -
219
231

238
247

249

249
256
261
269
277
281
289

293

Contents
Selected Bibliography 303
Author Index 307

Subject Index 309

Introduction

I Objects

In order to satisfy users’ needs, database technology requires the design
of a suitable representation of its application’s environment. This repre-
sentation is called a conceptual model. A conceptual model of an appli-
cation environment is thus an abstract representation of that environment
that contains only those abstract properties of the environment relevant
for the information requirements of its users.

Our approach to the design of a conceptual mode! of an application
environment is based on a collection of abstraction techniques. The most
fundamental technique is classification of relevant objects in an application
environment into a collection of object types. A set of objects is regarded
as an object type if all the objects in that set share the same sct of relevant
propertics (attributes). The relevance of a property of an object is, of
course, determined by the purpose of the model. A particular object then
becomes an instance of an object type. For example, in a university ap-
plication environment, object types would be STUDENT, PROFESSOR,
COURSE, DEPARTMENT, etc.

‘In order to apply the classification abstraction, we have to specify pre-
cisely the properties shared by a set of objects that belong to the same
type. For example, such a specification for the object type STUDENT
might look like this:

Object type: STUDENT

Attributes: Student identifier
Name -

2 ‘ Introduction

Level (undergraduate, graduate)
Address
Phone

An attribute of an object assumes particular values that also Bélong to
a type, that is, 1o a set of objects that share the same set of properties.
For example, the type of the attribute Name is a set of sequences of char-
acters, and the type of the attribute Level is a two-element set.

it follows then that a new object type is defined in terms of other,
already defined object types that become attributes of the new object type.
We say that an object is an aggregation of its attributes. Aggregation is
in fact another fundamental abstraction in the design of conceptual models
of applicaticn environments. Its importance comes from the fact that an
object type is defined as an aggregation of its attributes. In general, given
object types E1,E2,...,En, we define their aggregate object type E in such
a way that E1,E2,....En bécome components (attributes in a particular
case) of the object type E.

To clarify, we will use the programming language notation. The fact
that an object type E has object types E1,E2,...,En as its components is
expressed in terms of a record type. Such a type definition for the object
type STUDENT has the following form: .

TYPE Student = RECORD Student#: String7;
: Name: String30; ‘
Level: (undergraduate,graduate);
Address: String35;
» Phone: String7
END

In general, we have

TYPE Object = RECORD Attributel: Object1;
' Attribute2: Object2;

Attributen: Objectn
END

where Objectl, Object2,..., Objectn and Object are object types. v
The graphical notation used throughout this book is based on the math-
ematical interpretation of aggregation and has the following form:

Object

SN

Objecti Object2 Dbjects

1 Objects 3

The mathematical interpretation is in fact very simple. The set Object is
the Cartesian product of sets Objectl, Object2,..., Objectn; that is,

Object = Objectl x Object2 X -+ x Objectn.

Indeed, an instance of the type Obiject is a tuple (al,a2,...,an) of values
of attributes of that instance:

Object = {(al,a2,...,an) | ai in Objecti fori=1,2,...,n}.

Given an instance o of the type Object, its components are denoted
in the programming language notation as o.Attributel, o.Attribute2,
-..,0.Attributen. So, for example, if s is of type Student, its attributes are
denoted as

s.Student#, s.Name, s.Level, s.Address, s,Phone.

Selection of a component of an aggregate object (attribute of an object)
is also called projection and is of fundamental importanceé for the aggre-
gation abstraction. In fact, we can interpret Attributei as a function (pro-
Jjection)

Attributei: Object — Objecti
defined as
(al,a2,...,an) — ai.

The relational model of data is largely based on the above simple ob-
servations. In order to represent an application environment, it requires
only classification and aggregation abstractions, where the latter is used
only in a particular form where all the components of an object are simple.
An instance of an object type is represented as a tuple (al,a2,...,an) of
values of its attributes, so that a particular set of objects of the same type
is represented as a set of such tuples But such a set is formally a relation.
For example,

RegisteredStudents = StudentIdType x
NameType x-
LevelType x
AddressType X
PhoneType

is a set (a relation) of registered students, where the type of that set is
StudentSet defined in our programming language notation as

TYPE StudentSet = ENTITY SET OF Student.

The above genuinely simple and natural representation implies the fol-
lowing requirement: Given representations ol and 02 of two distinct objects
of the same type Object, we must have

ol.Attributei < > 02.Attributei for some i=1,2,...,n

4 ‘ Introduction

In other words, two distinet objects of the same type should be represented
by two distinct tuples of values of their attributes. In order to guarantee
this condition, it is sufficient if the two tuples have different values of at
least onc attribute.) .

The above reasoning makes obvious the importance of an attribute (or
a set of attributes, in general) whose value determines a unique object of
a given type. Such an attribute or a set of attributes is called an object
identifier, or a key. 1n a relation that represents a particular set of objects
of the same type, there is thus at most one tuple with a given key value.
The requircment that each object type in a conceptual model of an ap-
plication environment must have at least one key hardly needs any further
Justification. We simply need to know what actual object of an application
environment cach tuple of a relation represcnts.

2 Actiqns

A conceptual model of an application environment is meant to satisfy
information needs of users of that environment via queries stated against
that model. An example of a query would be

Print the names of all registered graduate students.

This query would be expressed in the programming language notation uscd
in this book as

FOREACH s IN RegisteredStudents
WHERE s.level = graduate

DO WriteString (s.Name); WriteLn
END ’

where s is of type Student and RegisteredStudents is of type StidentSet.

Sct-oriented queries are typical for the relational model of data. In fact,
in addition to the representation of sets of objects as relations, the relational
model also offers a collection of general-purpose operators upon such a
representation that act upon that representation in order to produce results
that satisfy specific information needs of end users. Projection is one such
operator, and the other involved in the above query is restriction—se-
lection of a subset of a set of objects where each object in the subset
satisfics a given condition. The result of the above query is expressed in
the usual mathematical notation in terms of restriction and projection as
follows:

{s.Name | s in RegisteredStudents and s.Level = graduate}.

A model of an application environment is of course useless unless we
can specify actions against the model that would produce some useful

2 Actions _ 5

effccts. This trivial observation indicates that a representation of an ap-
plication environment in terms of classification and aggregation of types
of objects in that environment is an extremely simplified view of the en-
vironment that has to be enriched by dctlons that may be performud «
the represented objecls

Actions associated with an object type in fact correspond to activities
in the application environment involving objects of that type. This means
our approach to conceptual modeling presented so far has to be refined
in a crucial way. An application environment is still viewed as a colleciion
of object types, but the essential part of specification of such a type is a
set of actions upon instances of that type that correspond to the actual
activities involving those objects in the application environment. For ex-
ample, conceptual representation of the object type STUDENT would
now be completed in the following manner:

Object type: STUDENT

Attributes: Student identificr
° Name
Level
Address
Phone

Actions: Enroll student
Drop student
Change level
Change address
Change phone

The refined object-action approach to conceptual modeling of appli-
cition environments requires specification of a set of actions associated
with objects of the same type as the most important specification of that
type. If we carry out this approach to all its consequences. thin an ohject
type may be defined entively in terms of actions that may be performed
upon instances of that type. Indeed, we already observed that attributes
of un object type in fact correspond to projections. If we accompany a
set of actions associated with an object type with a set of projections {¢.g.,
SelectStudentld, SelectName, SelectLevel, SelectAddress, SelectPhone)
to the attributes of that type, we obtain an entirely action- onuucd defi-
nition of an object type.

Although the action-oriented definition of an objcct type has i sound
mathematical basis, it is not unusual for programmers to deual with an
object entirely in terms of actions that may be performied upon that object.
In fact, the whole point, is to forbid explicit manipulation of representation
of an object by the clients of that object and force them to use a piedefined
set of actions given in the definition of that object type that are guaranteed
to manipulate the actual representation correctly.

