





ON STOCHASTIC DIFFERENTIAL EQUATIONS -
By

KIYOSI ITO
Let x; be a simple Markoff process with a continuous parameter t, and F(t,%;s,E)

be the transition probability law of the process:

(1) F(t,8 ;s,E) = Pr{x € B/x,= LER
where the right side means the probability of Xg € E under the condition: X=5.
The differential of Xy at t = s is given by the transition probability law of x;

in an infinitesimal neighborhood of t = s:
(@) F(s-4,,3 ;3+A1,E).

W. Feller!) has discussed the case in which it has the following form:
(3) F(S‘Aey 3 ES*A“)E) = (1-p(s, ) (A1*A2)G(S‘A2’§ ;S+A1’E)

"’(A1"A2)p(5s5 )P(S’S )E) * O(A1+A2))
where G(s-A2,5 ;s+A1,E) is a probability distribution as a function of E and

satisfies
1
(&) I, fl’l Y G(s-B,, % js+4,,d7 )—> O,
(5 !
LT
2 -%l<§
(6) = (2 - §)G(s-b,,3 ;5+8,,dm )—> b(t, § ),
1*02 jh-slsx 8 !

(1 - 3)% 6(s-8,, § 5+, ,dn )—> 2a(t, § ),

for A1+A2-——> 0 and p(s, ¥ ) > 0 and P(s, ¥ ,E) is a probability distribution in E. The
special case of ' p(s, ¥ ) = 0" has-already been treated by A. Kolmogoroffa) and
S. Bernstein.B)

We shall introduce a somewh&t-general definition of the differential of the

process X, (cf. 85). Let Ps denote the conditional probability law:

2§ 58958
Pr{xs+A1—xs_A2 iy 5}, 84,8, 2 0.

If the [1/A14A2]- times*) convolution of P

€ E/xS
tend b ity L

s, ,A1,A2 ends to a probability law L"S

+A2-——> 0, then Ls 5 is called the

s

with regard to Lévy's law-distance as A1

stochastic differential coefficient at s. Ls 5 is clearly an infinitely divisible

>

law. In the above Feller's case the logarithmic characteristic function 5)
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Y (z ’Lssi ) of Ls',; is given by :
(1) (3,1, ) = 1b(s, 5 )z - a(s, 5 Ja**n(s,3 )jm (e"2-1)P(s, 5 ,au(+)§ ).6)

-0
A problem of stochastic differential equations is to construct a Markoff process
whose stochastic differential coefficient~Lt’3

W. Feller has deduced the following integro-differential equation from (3), (4),
(5) and (6):
(8) —Q_Bt. F(t,s ;S,E)*a(t,S) as 22 F(t,; ;S’E) + b(t,}) FX3 F(t’g ;S’E)

-p(t, 3 JF(t,3 5s,E) + p(t,§ )ij(t,ﬂ ;8,E)P(t,¥ ,dm) = 0. He has proved the
-00

is given as a function of (t, ¥ ).

existence and uniqueness of the solution of this equation under some conditions and has
shown that the solution becomes a transition probability law, and satisfies (3),(4),(5)
(6). He has termed the case: p(t,¥ ) = O as continuous case and the case: a(t, ¥ )= O
and b(t,X¥ ) = O as purely discontinuous case.

It is true that we can construct a simple Markoff process from the transition

probability law by introducing a probability distribution into the functional space RE
by Kolmogoroff's theorem,7) but it is impossible to discuss the regularity of the ob-
tained process, for example measurability, continuity, discontinuity of the first kind
etc., as was pointed out by J. L. Doob.8)  To discuss the measurability of the process
for example, J. L. Doob has introduced a probability distribution on a subspace of RE
and E. Slutsky has introduced a new concept !'measurable kernel'' .9) We shall in-
vestigate the sense of the term ' continuous case! and ' purely discontinuous case!!
used by W. Feller from the rigorous view-point of J. L. Doob and E, Slutsky. A recent

research of J. L. Doob10) concerning a simple Markoff process taking values in an en-
umerable set has been achieved from this view-point. A research of R. Fortet!1) con-

cerning the above continuous case seems also to stand on the same idea but the author

is not yet informed of the details .

In his paper ¥ ON STOCHASTIC PROCESSES (I)" 12) the author has deduced Lévy's
canonical form of differential processes with no fixed discontinuities by making use
of the rigorous scheme of J. L. Doob. Using the results of the above paper, we shall
here construct the solution of the above stochastic differential equation in such a way
that we may be able to discuss the regularity of the solution. For this purpose we
transform the stochastic differential equation into a stochastic integral equation.

The first and most simple form of stochastic integral is Wiener's integral13) which
is an integral of a function ©(t) € L, based on a brownian motion g(t):

_]}f(t)dg(t). In this integral 9 (t) is not a random function. The author has ex-
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extended this notion and defined an integral in case O (t) is a random function satis-.
sying some conditions.1h) A brownian motion is a temporally homogeneous and
differential (i.e. spatially homogeneous) process with no moving discontinuity. The

process x(t) =‘J.%f (t)dg(t) obtained by Wiener's integral is not temporally homo-
a

geneous but spatially homogeneous. In order to obtain a simple Markoff process--which

is in general neither temporally nor spatially homogeneous--we shall have to solve

a stochastic integral equation:
t
x(t) =j o (T,x(7))dg(T)

a
or more generally
t
x(t) = ¢ j (7, x()ats | o (T,x(7))ag(T).
a a
The author has published a note15) on this stochastic integral equation, which concerns
the continuous case above mentioned.

In order to discuss the general case we shall have to consider a stochastic integral
equation where the integral is based not on a brownian motion but on a more general
temporally homogeneous differential process, which will be called a fundamental
differential process (Cf. 8§ 6) in this paper.

Chapter I is devoted to the explanation of the fundamental concepts. Some of them
are well-known but we shall explain them in a rigorous form for the later use. In
Chapter II we shall introduce a stochastic integral of a general type. The results of
the author's previous paper16) will be contained here in an improved form. = The aim of
this paper will be attained in Chapter III, where we shall investigate a stochastic

differential equation and a stochastic integral equation.

The author expresses his hearty thanks to Professor S. Iyanaga, Professor K. Yosida,
Professor S. Kakutani and Mr. H. Anzai who have encouraged him with their kind dis-
cussions and to Professor J. L. Doob who has given him valuable suggestions to improve
the manuscript and friendly aid to publish it.

I. Fundamental concepts.

81. Function of random variables. Let X be any set and By be a completely

additive class of subsets of X. When we consider X together with By we call it a

Borel field (X,BX). It is evident that BX may be arbitrarily taken, but in case X is

the real number space R1, then we usually take the system B1 of all Borel subsets of
R! as Bx, and in case X is RA, Qx is usually the least completely additive class that
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contains all Borel cyclinder subsets of RA, which we denote by BA. 2L BX and By

are associated respectively with X and with Y, then we usually associate with the

product space the least completely additive class that contains all the sets of the

form: E @Y, X E .,E€B , E€R ; this class will be denoted by B @B . The
P T Ty g

product of many Borel fields can be similarly defined.
Let (X,EX) and (Y,B.!) be Borel fields. A mapping f(x) from X into Y is called

to be B-measurable if f-1 (EY)E BX for any EYG B e If f(x) is a B-measurable mapping
from (X,Bx) into (Y’BY) and if g(x) is a B-measurable mapping from (Y’BY) into (Z,Bz),
then g(f(x)) will be a B-measurable mapping from (X,BX) into (Z,BZ).

Let ({2,B, ,P) be a probability field, where {2 is a set, Bn is a completely
additive class of subsets of £ , and P is a probability distribution (p.d.) on

(Q1,Ba). An (X,BX)-valned function x(w ) defined on L1 is called an (X,BX)-valﬁed
random variable, if it is Bemeasurable i.e. x"‘(Ex) € Bp for any Ey € By. If we put
& -1

Px(EX) = P(x (EK)) for Exe Bx. Px is a p.d. on a Borel field (X,BX) which is called
the probability law (P.£.) of x; we also say that x is governed by Px.

Let x(w) be an (X,Bx)-valued random variable and f(:) be a B-measurable mapping
from (X,Bx) into (Y,BI). Put y(w) = f(x(w)). Then y(w) will be a (Y,BY)-valued
random variable. y(w) is called a B-measurable function of x(w ).

Theorem 1. Let yn( w), n=1,2,..., be real-valued B-measurable functions of an

(X,Bx)-valued random variable, If yn(w) be convergent in probability, then the limit

variable y(w ) is also coincident with a B-measurable function of x(w) up to P-measure
0.

Proof. By taking a subsequence if necessary, we may assume that yn('u) be con-
vergent with P-measure 1. Put yn(w) = fn(x(W)). Then

PN U N 135l2 (3) - £.03) | <1/6D=P(N U N {ws] £ (x(w))
m
P q mn>q P q mn>q

- f(x(w )| < 1/p}) = 1.
Put £(3) = lim fn(} ) in the above § -set and = O elsewhere. Then f£(3 ) is a
B-measurable furc tion of § € (X,B ), since the above ¥ -set belongs to By. We have
clearly, with probability 1,

f(x{w)) = 1lm £ (x(«)) = 1my («) = y(w),

which completes the proof.
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82, Conditional probability law. Let x(w) and y(« ) be random variables taking
. P / £fE €8 '
values in (X,&) and (Y,B!) respectively. A function Y(El' F)o EY _!and 56X
will be called the (conditional) probability law of y(«w ) under the condition that x(w )
= § and will be denoted by Py(Ey,/x(‘v) =3 )or Pr{yaE!/x =3 ), if and only if
(2.1) Py(EI/J ) is a p.d. on (Y’EY) for any § ,

(2.2) Py(EY/S ) is a B-measurable function of 3¢ (X,B) for any Fy € By, and
(203) ‘fExPy(E!/J )Px(dj) = Pl‘{xE Ex‘ye EI} = P(x’1(EX\n y-1(FY)).

The existence and uniqueness (up to P-measure 0) of Py(l:‘.r/s ) was proved by J. L. Doob!7)

in the case that (Y’BI) is the n-dimensional space (Rn,Bn).
Py(EI/x(w )) i.e. the function of «w obtained by replacing ¥ with x(w) in Py(E/})
will be called the conditional p.£.of y(w) under the condition that x(w) is determined

and it will be also denoted by Pr{ye E,I/x(w)}: this is clearly a real-valued random

variable for any assigned EI. By (2.3) we have

2. P /x(w)) = Pr{ye = ctation.).
(24) CP (B /x(«)) = Pr{ye B} (€= expectation.)

If the p.£. of the combined random variable (x(«),y(w)), which clearly takes
values in (X.Y,PXOBY), is coincident with the direct product measure of Px and

Py: Px® Py on (X@Y,BIO BQ then x(w ) and y(«’) are called to be independent. The in-

dependence of many random variables can be similarly defined. Clearly we have
Theorem 2.1. x(w) and y(«) be independent. Then
P (E /x(w) = =P (E for almost all (P
B /(@) = 3) = B(E) a ey X

i.e.
Py(EI/x(U)) = PY(E!) for almost all (P) w .,

Theorem 2.2, x(w) and y(w) be independent. G(§ ,7) be a B-measurable mapping
from (X@Y,By® By) into (R1,B1). Put z(w) = G(x(ww ),y(w)). Then we have

P,(E/x(w) =3) = Pr{G(§,y(w)) & E}
for almost all (Px) 5.

Proof. Since x(w) and y(«w) are independent, we can make use of Fubini's theorem.
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Prize B, xeR} = (P, ® P )({(5,2)50(5,72)¢E, 3¢ED)

= J P ({%;£(5,7)€E}) P (d3) =j Pr{f(3 ,y(«))€E}P (d5),
Ey ¥ E
X
which completes the proof.
Theorem 2.3. x(«) and y(w) be independent. G(% ,% ) be any real-valued B-measur-

able function in (% ,%2). If G(x(« ),y(«)) = O with P-measure 1, then G( 3 ,y(«))=0
with P-measure 1 for almost all (P,) 5 .

Proof. By Theorem 2.2 we have xPr{G(§ (e )) = O}Px(dS) Pr{G(x(« ),y(«))=0}=1

and so Pr{G(¥ ,y(«)) = 0} = 1 for almost all (Px) Beo

83. Transition probability law. x(7,«w) be a real random variable for any Z ,
a< Z<b. The system x(7,a ), a < < b, is called a stochastic process, which is also
considered as an (RI,BI)-valued random variable, I being the interval [a,b]18).  The
pel. of x(s,w) under the condition that (x(%,«), a < 2K t)19) is determined:

(3.1) Prix(s,w)€E/x(7,~), a <TE t} (t < s)
is called the transition probability law of ‘this process. If this is equal to

(3.2) Prix(s,«) € E/x(t,w)}
for almost all (P) w , the process is called a simple Markoff process. In such a process
we put

(3.3) F(t,§;s,E) = Pr{x(s,«) € E/x(t,«) = 3}.

Then we can easily prove, for almost all (Px(t,w )) S

[ o}
(3.4) F(t,5;s,E) = F(t,§ ;u,d 2)F(u,2 ;s,E), (t<u<e),
-00

which is well-known as Chapman's equation.

If x(s, ,«) - x(t, ,«), ¥ =1,2,...,n, are independent random variables for any
system of non-overlapping intervals (t, ,s, ),» =1,2,...,n, then we call x(2Z ,« ),
a £ T b, a differential process. This is evidently a simple Markoff process whose
transition p.l. is given by

(3.5) PF(t,5 ;s,E) = Ft,S(E(-) z),

where Ft : is the p.l. of x(s,w)-x(t,«) and E(-) 3 is the set {# - §; #€ E}; (3.5) will
S

be obtained at once if we substitute (x(%,«), a < < t), x(s,w )-x(t, «) and x(s,w) re-

spectively for x(w), y(«) and z(«) in Theorem 2.2,
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84. THREE ELEMENTS OF AN INFINITELY DIVISIBLE LAW OF PROBABILITY.

The logarithmic characteristic function (l.c.f.) of an infinitely divisible law of
probability (i.d.l.) can be expressed in the form:

o2 $ a
(4e1) imz - - 22 +‘5‘ (elf(u)z— 1) _?:ué__ + f (eif(u)z-1-if(u)z)-;;-
[u[>1 Jul<1
in one and only one way, where m is real, 0" 2 O, and f(u) is monotone non-decreasing

and right-continuous and
j f (u)2 —dg- < 00}
Jul<1 u

this formula is deduced at once from Levy's fomula.zo) These m, 0", f(u) will be called
the three elements of this i.d.l. . The i.d.l. whose L.c.f. is

a2 iuz o iuz a0
(4.2) Vo(z) =in o 2 (e -1) ‘?— + (e =1-izu) —-u—z- .
[ul>1 Jul<1

i.e. m=¢'=1, f(u) = u,
will be called the fundamental i.d.l. in this note.

Theorem 4.1. Let m(L),0 (L) and f(u,L) be the three elements of an i.d.l. L.
Then m(L),0"(L) and f(u,L)(for any fixed u) are all B-measurable in L=(L(E);E€ B! )6'(1131,§1)

Remark. By the expression " m(L) is B-measurable in LE(L(E),E€B1)€ (RB1,BB1) we
mean that there exists at least one B-measurable function M(L) defined on the whole space
(RB1 ,BB1) such that we have M(L) = m(L) for any L = (L(E), E€B') that is an i.d.l. as a
function of E.

Proof. Let d>(z,L) be the characteristic function of any i.d.l. L. For any z,
$(z,L) is B-measurable in L€ (RB!,BB1), because, if we define QZ(L) by

n2
§,@w

lim > exp(ikz/n)L((k-1/n,k/n)) (if this limit exists)
n——>00 k=-n2

0 (if otherwise),

then EZ(L) (for each z) is B-measurable function defined on the whole space

1
(rB ,BB1) and ﬁz(L) = §(z,L) for any i.d.l. L.



8 KIYOSI ITO

Let "f’(z,L) be the logarithmic characteristic function of any i.d.l. Since

VY (z,L) is the branch of log ¢(z,L) which is obtained from log ¢(0,L)=1 by the analytic
prolongation along the curve:

d(AL), o< ALz (oro2 A > 2)
and so it is expressible as

Vi

k =
TR 14 5 2,L) - $(=5 L)
z,L) =
n—>o0 k=1 ]  ($(¥2,1) - d(Kslz,1))te1
o
we see that Y (z,L) is also B-measurable in L for any z. By virtue of the Levy's
formula Y (z,L) is written in the form

Gae L B8 e, L e o S CRRAT
v
2 1+u2

=00

where the measure n is determined by the following procedure (Cf. A. Khintchine: Dé-

duction nouvelle d'une formule de P, Lfevy, Bull. d. 1l'univ, d'etat a Moscou, Serie In-
ternational, Sect. A, Vol. 1, Fasc. 1, 1937),

t+1
A(t,L) = \ Y (z,L)dz - 2¥(t,L),
t-1
1 = 1 itu
K(u,L) = ——  1im —  A(t,L)dt,
2 C—>0 it

2
w(w), 0 - [© oy >0,

a+o 2
((=00,a),L =S 1y __4G(v,L) (a< 0).
n((~o00,a),L) s —vg—d v,L) (a )

Therefore we can prove recursively the B-measurability of the above functions of L. Thus

we obtain, for each a > O, a B-measurable functions Na(L) defined on the whole space
(RB1 ,BB1) such that N.(L) = n((a,0),L) for any i.del. L. We may assume that Na(L) is

monotone-decreasing and left-continuous in a for each L, by taking the supremum of
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Nr(L), r running over all rational numbers r < a, instead of Na(L)’ if necessary.

Now we shall prove, for each u > O, that f(u,L) is B-measurable in L. f(u,L) is
written in the following form by the definition.

£(u,L) = inf {a3n((a,o00),L) < ‘J;} (u > 0).
Therefore, if we put

1
F (L) = inf{a;N (L) < 1;},

Fu(L) (for each u > 0) is a function defined on the whole space RB! and Fu(L)=f(u,L) for

any i.d.l. L. The B-measurability of Fu(L) is clear on account of the fact that

" Fu(L) < a'"' is equivalent to " Na(L) < % "' , which follows from the definition of
Fu(L) and the monotone-property (in a) of Na(L)‘ Thus we see that f(u,L) (for each

u > 0) is B-measurable in L. Similarly we can show that f(u,L) (u < 0) is B-measurable
in L. It is clear that f(0,L) (= O) is B-measurable in L.

Now we put
§(2,1) = in(L)s -Oflde? = Y (a,L) - [ (omtiaumn 42
[ul>1
- f (exp(izf(u))=-1=izf(u,L)) S .
u2

[ulg1

Then §(z,L) (for each z) is B-measurable in L, since ¥ (z,L) and f(u,L) are B-measurable.
But we have

m(L) = —;-i—a& (1,L) - §(2,L))
and
o %) - 2§(1,1) - 4d(2,L),
from which follows the B-measurability of m(L) and 0" (L).

Theorem 4,2, Let Lo , € €A, be any system of i.d.l. depending on o € A and
My , o and fo (u) be the three elements of Lo+ In order that Ly , xe€A, be totally
bounded in the sense of Levy's 1&w—distance,21) it is necessary and sufficient that each
of |me |, o and ||f« ||, n=1,2,..., is bounded, where

2
- 2 du
RESRIM i ol

[ulgn
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Proof. L« is decomposed as
- 2 (4 (5
L, = L{D *1(2) *L(z)n*L ,2 n*L“_) .

where the l.c.f. of the factors are respectively

2 ifu (u)z 5
Ga . % ; d
im, z, - ; ze, iz Lo () d_uu?’ (e -1-11;4(u)z) u;
1<|ul<n o< |ul<n
ify (u)z
and f (e -1) —dg-—.
IHIZ n u

Sufficiency. If the condition is satisfied, {LQ)}, [Lﬁf)} are clearly totally
bounded and {La(‘B)n} is also totally bounded for any fixed n, since we have, by Schwarz'
inequality,

2
du 2 du
] rm—lsef £, A2,
Wil w fetulen * u?

L(‘:‘)n has the expectation O and the standard deviation ||fs || and so{L([;) L A}
is totally bounded. Therefore
Bt (2 (3 (&)
{LOCH=I'5£1) *Iﬂ) *Lo()n*L.‘n,«eA}
is totally bounded, and so we have

i *
lim inf, L', ((-c,c)) = 1.
C—>

But
Ly ((-0,6)) 2 L% ((=¢,0)) 13) (fo}) = L} ((-c,e)) exp(-2/n).
Consequently we have

lim inf, L ((-c,c)) 2 exp(-2/n) and so  lim inf, L& ((-c,c))=1,
c—300 c—> ®

which completes the proof.

Necessity. Let Q(L,c) be Levy's concentration functionze) of the p.d.L. Suppose
that {L.,_} is totally bounded. Then

inf, O(LS‘?), c) —35 1 as ¢ —> .

But we have Q(L.(‘_a) ,¢) 2 Q(Ly ,¢) by Levy's theorem concerning the non-decreasing of
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concentration function. Therefore

(2)
inf, Q(L, ,c) —> 1 as ¢ —> o,

and so oz will be bounded since L.(La) is a Gaussian distribution with the mean O and

the standard deviation 67

(5) (5): = G0 &1 (5)
L o is decomposed as L"C e Lac e LoL S, where the factors has the l.c.f.

00 -n
(exp(ify (u)z) - 1)clu/u2 and (exp(ify (u)z) - l)du/u2
n -00
respectively. By the above-cited Lévy's theorem we see

(4.3) inf"‘Q(L(So)c 1'”,c) 2 inf,, Q(Ly ,c) —> 1 as ¢ —> .
But ¢ < f, (n) implies Q(L(5°)L m,c) = exp(-1/n), i.e.
(L) Q(L(j) ,¢) > exp(-1/n) implies ¢ > fo (u).
n

By (4.3) there exists c such that Q(L(i)n+,c) > exp(-1/n) and so that ¢ > £, (n):for

«€ A, Thus we see that f, (n) is bounded for any assigned n. This is also the
case for fo (-n). Consequently we see that f, (u) is bounded whenever «€ A and
Iu] < n, for any fixed n.

If Ld(p),p=1 s2,e0e, be chosen from {L,‘} such that Hf«_ (p)”n increases in-

(4)
o (p)n

the standard deviation Hi‘;

definitely with p, L is approximately a Gaussian distribution with the mean O and

(p )H as p —> oo by the central limit theorem. Thus we

have

(4)
QL e ) — 1/V 3% exp(-t2/2)dt < 1
o(p)n o(p) n :

as p —> oo, which contradicts with the fact that
inf, Q(L('*G)L 15€) 2 inf QL ,¢) —> 1 (as p —> o).
Thus Hf,c ”n proves to be bounded for any fixed n. Therefore

{L(3) * 1(8) » L(i) } is totally bounded. Therefore LQ) must be totally
n

o n «n
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bounded and so {m,‘} will be bounded.

85. STOCHASTIC DIFFERENTIATION. x(T,w), a <T< b, be a stochastic process on
(£,B,P) and F(E,w ;A1’A2) be the conditional p.l. of x(t+A1,w)-x(t-A2,w)(A1,A2 > 0)

under the condition that x(7T,w), a < T< t - A, be deternined. If the [1/A1+l.\2]—times

convolution of F(E,w ;A1,A2) P -converges to a distribution L(E,w) in probability as

Ay+A,—> 0, i.e. for any € > O, there exists § = §(e) such that 0 < Aq+b, < § implies
Pr{ f (H(E,w 389,8,), L(E,w)) > ghic e

S being Lévy's law-distance, then we say that x(Z ,«w) is differentiable at t and we

call L(E,w ) the differential coefficient of x( ¢ ,«) at t, and we denote it with Dy x(T ,w)

or briefly with D (t,w), This is considered as an (RB1,BB1)-valued random variable.
By taking a convenient sequence A;+Aé > A{' + Aé > ves —> 0, we see that L(E,w) is the

P-1imit of the [1/A$n)¢Aén)]—times convolution of F(E,w;Asn),Aé"))with P-measure 1, and
so we obtain

Theorem 5.1. DX(t,«) is an i.d.l. with P-measure 1.

From the definition we obtain, by making use of Theorem 1,

Theorem 5.2, DX(t,w) is a B-measurable function of (x(7,w), a <TK t). If
x(T,w), a< < b, is a simple Markoff process, then DK(t,« ), if it exists, is a B-

measurable function of x(t,w); the form of the function clearly depends on t. If
x(%,w), a < b, is a differential process, then DX(t,w), if it exists, does not de-

pend on w but on t. If x(T,w), a <7< b, is a temporally homogeneous differential

process, then DX(t,«w) exists and depends neither on wnor on t; the l.c.f. of DK(t,w )

is equal to the l.c.f. of the p.l. of x(b,w) - x(a,w) divided by b-a.
We can easily see that, if F*n P-converges to a probability law, then r P-con-
n

verges to the unit distribution., and so we have

Theorem 5.3. If x(7T,«w) is differentiable at t, then it is continuous at t in
probability i.e. t is not a fixed discontinuity of this process.

II. Stochastic Integral.

The integral of the form:

Jo @z, w,
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where O (T) € L, and g(T,w) is a brownian motion, is well-known as Wiener's
2
integral. 3) The author has extended this integral to the case in which @ depends not

only on % but also on w and called it a stochastic integral.eh) In this Chapter we

treat a more general stochastic integral for the later use,

§6. FUNDAMENTAL DIFFERENTIAL PROCESS. Let 1(t,w), a < t < b, be a temporally
homogeneous differential process such that both 1(t+0, w) and 1(t-0, «)exist and 1(t+0,w)

=1(t,w), i.e. 1(t,w) is continuous in t except possibly for discontinuities of the
first kind (hereafter we term this property with " belong to dj-class" )« Further we re-

quire that the p.l. of 1(s,w) - 1(t,w) has the l.c.f. (s-—t)l{fo(z), where‘\[/o(z) is the
l.c.f. of the fundamental i.d.l. . Then 1(t,w), a< t < b, is defined to be a funda-
mental differential process. Such a process can be realized on a conveniently defined
probability field ({£2,B4 ,P), where the p.l. of 1(a,w) can be arbitrarily assigned.

Any jump of 1(t,w) is expressed by a point (t,u) € [a,b] & R1, t being its position
and u being its height: 1(t,w) - 1(t-0O,w). The number p(E,«w) of the jumps in E, E
being a Borel subset of [a,b] & R’, can be considered a real random variable, which proves

to be poverned by the Poisson distribution with the mean:

n(E) =§ d Tdu/u?.
E

p(E,w) is evidently a function of 1(t,w), a <t < b. The system {p(E,w)} is called
the discontinuous part of 1l(t,w), a < t < b, 1(t,w) can be expressed as
t t
(t,w) = 1(a,w) + t + g(t,w) + S g up(d T du, w) +g uq(d?du,w)
|u| 2l |u|<1

a a

for any t, a < t < b, for almost all (P) w , where q(E,w ) = p(E,w) - n(E) and g(t,w)

is a brownian motion which is also a function of 1(7 ,w), a_<ZT< t, and is called the
continuous part of 1(7°,w),
For any disjoint system E, ,Ea,...,En, p(E1,w),p(Ez,w),...,p(En,w) and (g( T, w),

a < T< b) are independent.
All these properties can be immediately deduced fram the results in the above-

cited paper.as)



14 KIYOSI ITO .

§7. STOCHASTIC INTEGRAL BASED ON (-5 We shall define here an integral of the

form:
(2:1) ﬁ‘( T,w)dg(7, w), E being a Borel subset of (a,b), in such a way that it
E

may be a natural extension of Wiener's integral.

First we shall consider the case in which E is an interval: I1=(0C,19]. By S(I,)
we denote the class of all functions O (7 ,w), <7< B, w Gn, satisfying the follow-
ing three conditions:

(8.1) 0o (t,w) is measurable in (t,w),
-
(5.2) fa'( 7, w)? dT< oo for almost allw , and
oC

(S.3) for any t, « < t < @, the system (0 (T ,w),«<7< t;
g(T,w) - g(&,w), &< T< t) is independent of (g(7,w) - g(t,w), t ST A).  As
is easily verified, S(I1) is conditionally complete; :lfd;’1 € S(I1) tends to o~ for

almost all (t,w) and if |6~ | < 0~€5S(I,), then 0~ € S(I.).
n o 1 [e9) 1

Theorem 7.1. We can determine, for 9 € S(I1),

y-4
(7.1") f"'(?‘,wmg(?,w} or f (T,w)dg(T,w) or briefly f(o’,w) in
(4 I
9

one and only one way so that it may satisfy (G.1) and (G.2). Furthermore it satisfies
(Ge3), (Gu4), (G.5) and (G.6).
(G.1) When O (t,w) is a uniformly stepwise function, i.e., when there exist

&=t < t1 C e g tkaﬁ independent of w such that o”(t,w) =o’(ty_1,¢~),ti‘_1gt <ty

we have
k
J(fsw) = Z o’(ty_."“’)(g(t’y )w) d g(ty_1,w))'
(G.2) Y E S(I1) tends to 0 for almost all (T,w), and if

|0"n| < 0"; € S(I1) and further if every B-measurable function ¢ (t,w) of (07, 07 )

PEARR
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satisfies (S.3), then f(a;, w) converges to ﬁa;,w) in probability.

(G.3) f(c1 a’1+c20'2,w) 5 ﬁf1,w) +e, ﬂa'é,w)

iy 0"1, a,, c Oyt e, 056€ 8(14).

(Gu) €<<fl(r,w)>2) [16@2( £, w))dT
1 1

if the right side is finite.

(G.5) If 0,(T,w) = 0,(T,w) for Tel,, weld, _(11 being a

P-measurable set, then f(o’ ) =ﬁ0"2,uI) for almost all (P) W‘-q.

(G.6) 1f fé(a’e(f,uI))dT <o, then Gl f(a’,w)) = 0.
1
1

Proof of the existence. In case 0 is a uniformly stepwise function we define by

(Ga1). It is evident that this definition satisfies (G.3), (G.4), (G.5) and (G.6).

The condition (8.3) will be used in the proof of (G.4) and (G.5) and (G.6).
In order to define J_(a',w) for 07€ S(I4) such that

(7.2) o112 - f (5(0’2( T,w))dT < o,
P
1

we shall establish

Lemma 7.1. For any 0" € S(I) satisfying (7.2) we can find a sequence of uniformly
stepwise functions o’n € S(I) such that

@3 e, -ol? - flfurnm,w)-cr(r,w))?)dr
1

may tend to O.
The proof can be achieved by the method26) J« L. Doob has used in his research of
measurable stochastic processes. By defining 0 (T ,w) =0 for T < exorT> /S , we

may assume that o (T,w) € La(R1x.ﬂ), and so, for almost all ws ,a’(‘t‘,w)eLz(R1).



