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Crystal Optics.
By
G. N. RAMACHANDRAN and S. RAMASESHAN.
With 99 Figures.

A. Polarisation of light.

1. States of polarisation of light: Poincaré sphere. o) Light is a transverse
electromagnetic wave and the nature of the vibration of the electric displacement
vector in the plane normal to the direction
of wave propagation defines the state of
polarisation of a light beam. In a com-
pletely polarised beam?, the vibration

may be either linear in any azimuth at I{ /
right angles to the propagation direction,

or elliptical, with the major axis at any

azimuth. The ratio of the axes of the 4
ellipse can have any value and the sense 3~

N

of the ellipse may again be right or left
handed. The two limiting cases of elliptic
vibrations are linear and circular vibra-
tions. Correspondingly, the light beam
would be said to be elliptically, linearly
or circularly polarised.

A general state of polarisation can
thus be described by two quantities:
(a) the orientation of the major axis of Fig. 1. Elliptically polarised light.
the ellipse, which may be specified by
the angle 4 which it makes with a given direction in the wave front and (b) the
ratio of the axes of the ellipse (b/a, b<a). The sense of the ellipse could be speci-
fied by making the axial ratio positive for left-rotating ellipses and negative for
right-rotating ellipses. The terms right and left-rotation are with respect to an
observer looking towards the source of light. If the electric displacement vector
rotates clockwise with progress of time, then it is right-rotating. At any instant
of time the terminus of the electric displacement vector therefore forms a right-
handed screw jin space for a right elliptically polarised light beam.

Throughout this article, we shall imagine the light to be propagated along 0Z
(when not specified otherwise), which is taken to be horizontal (Fig. 1). The other
two axes are taken horizontal (0X) and vertical (0Y), the three together forming
a right-handed system of co-ordinates.

The orientation of the major axis of the ellipse is given by the angle (4) which
it makes with the horizontal (0OX) measured in the counter-clockwise direction,

1 The descriptions of unpolarised and partially polarised beams of light are given in
Sects. 8 and 11.
Handbuch der Physik, Bd. XXV/1. ) 1



2 G.N. RaMAcHANDRAN and S. RaMasEsHAN: Crystal Optics. Sect. 1.

as seen by an observer looking towards the source. The ellipticity is defined
by another angle w, given by tan w =b/a. The two angles 4 and w, which we
shall denote by azimuth and ellipticity?, uniquely specify the state of polarisa-
tion of a beam of light and all possible states of polarisation are covered by the
range 0 to 7 of A and the range — 7/4 to 7/4 of w (taken together).

B) Poincaré sphere. The states of polarisation of a light beam can be uniquely
represented by a point on the surface of a sphere of unit radius, whose latitude
and longitude have the values 2w, 2A. This representation may be called the
Poincaré representation and the sphere, the Poincaré sphere, after H. POINCARE
who first suggested this idea®. The range of values of 24 and 2w required for
describing all possible states of polarisation are therefore 24 =0 to 27, and 2w =
— 72 to m/2, which covers the surface of the sphere compietely. Thus all possible

® states of polarisation are represented by
) points on a sphere, there being a one-to-
one correspondence between the points on
z ‘ﬁ\ the sphere and the various states of polari-
sation. A reversal of the direction of the
) major axis changes 1 by = and therefore
\ ‘ 22 by 2x. It is the same state as before
’ 7 and is represented by the same point on
4

the Poincaré sphere.
Fig. 2 gives a picture of the Poincaré
% sphere. The points H and V represent
horizontal and vertical linearly polarised
light. Both are on the equator (2w =0)

]
=T

(] ¥ and are at an angle z apart. L and R
£ 4 are the poles of thie sphere and represent
O left and right circular vibrations. All linear

Fig. 2. The Ponicare sphere. A point P of longitude  gtates of polarisation are represented b
24 and lamuﬂ:ﬁ‘&ﬁﬁlﬂeﬁxéf;pﬁf vibration of points on Iihe equator HC V%, the longi}:

tude being equal to twice the angle made
with the horizontal. The points C and D, which are z/2 away from H and V
thus correspond to linear vibrations at 4 z/4. All elliptical states having the same
orientation (4) of their major axes are represented by points on the meridian
(LPR) of longitude 24. All ellipses having the same axial ratio (b/a =tan w)
are represented by points on the latitude circle (E PF) of latitude 2w.

We shall, in general, call a beam of polarised light, whose state is represented
by a point P on the Poincaré sphere, as light of polarisation state P. Similarly,
a device which produces light of polarisation state P will be called ““polariser P”’.
A device which transmits light of polarisation state P completely is then called
“analyser P”. As will be seen later, it will be necessary to consider the ortho-
gonal co-ordinate axes O UV W in the space of the Poincaré sphere. These axes
are respectively parallel to HV, DC and LR.

In crystal optics, we shall be interested in the changes produced in the state
of polarisation of a beam of light traversing an anisotropic medium. The Poincaré
representation is admirably suited for this purpose, and we shall therefore deal
with some of the fundamental properties of the Poincaré sphere in this chapter.

! In spite of its ambiguity it has been decided to use the term ‘‘ellipticity’’ for the sake
of convenience in preference to such terms as angle of ellipticity etc. When the ““ellipticity’’
is small the cllipse is highly elongated, and it becomes a line in the limit when the ““ellipticity '
is zero.

2 H', Poinciry: Théerie Mathématique de la Lumiére, Vol. IT, Chap. XII. Paris 1892.



Sect. 2. Intensity transmitted by an analyser. 3

A knowledge of spherical trigonometry is required for this purpose, which may be
readily obtained from the books listed in footnote!. Wherever possible, a per-
spective diagram of the sphere will be given, but for some purposes, the stereo-
graphic projection is more convenient. Details regarding the stereographic
projection and its properties will be found in any textbook on crystallography,
and the books listed in footnote? may be referred to in particular. The pole L
is taken to be above the plane in all the projections; points on the sphere below
the plane of the paper are indicated by a circle around the symbol representing
the point, e.g. (1).

In spite of its elegance and simplicity, the Poincaré sphere representation of polarisation
states is not discussed in most textbooks and works of reference on optics. An account of
the Poincaré sphere and its use in the study of the transmission of light in optically active
birefringent crystals is contained in PockEiLrs’ Lehrbuch ({2], pp. 11—13 and 309—313).
Since then, a fair number of original investigations appear to have made use of this represen-
tation3. The advantages of the Poincaré representation in studies on crystal optics and
analysis of polarised light were pointed out
in a recent paper of RAMACHANDRAN and
RaMAsEsHANY. A review of some of the
application of the Poincaré sphere has been
given by JERRARD, more recently?®.

Fig. 3a and b. Light of state P is incident on an analyser 4. Fraction of intensity transmitted is cos® 3 PA4.

2. Intensity transmitted by an analyser when light of arbitrary polarisation is
incident on it®. In Fig. 3, let the analyser be represented by the state 4, (24,, 2w,).
We wish to determine the fraction of a light beam of polarisation P, (21p, 2wp)

! W.J. McLELLAND and T. PRESTON: A treatise on spherical trigonometry with applica-
tions to spherical geometry. London 1897. — I. TODHUNTER and J. G. LEATHEM: Spherical
trigonometry. London 1911.

? S.L. PENFIELD: Amer. J. Sci. 11, 1, 115 (1901); 14, 249 (1902). — E. BoExE: Die An-
wendung der stereographischen Projection bei kristallographischen Untersuchungen. Berlin:
Borntriger 1911. See also C.S. BARRETT: Structure of Metals. New York: McGraw-Hill
1943.

3 J. BEQUEREL: Commun. Phys. Lab. Univ. Leiden No. 91C (1928); 221 A (1930). —
L. CaaumonTt: C. R. Acad. Sci., Paris 150, 1604 (1913). — Ann. Chim. Phys. Paris (9) 4, 101
(1915). — C.A. SKINNER: ]. Opt. Soc. Amer. 10, 490 (1925). — R.E. WRIGHT: J. Opt. Soc.
Amer. 20, 529 (1930). — G. BRuHAT and P. GRIVET: J. Phys. Radium 6, 12 (1935). —
Y. BjorNSTAHL: Phys. Z. 42, 437 (1939). — Z. Instrumentenkde. 59, 425 (1939). — O. SNELL-
MaN and Y. BjornsTaHL: Kolloid-Beih. 52, 403 (1941). — M.F. BoxoTEIN: J. Techn. Phys.
USSR. 18, 673 (1948). — G.N. RAMACHANDRAN and V. CHANDRASEKHARAN: Proc. Ind.
Acad. Sci. A 33, 199 (1951). — S. RAMASESHAN and V. CHANDRASEKHARAN: Current Sci,
20, 150 (1951). — S. RamasesHAN: Proc. Ind. Acad. Sci. A 34, 32 (1951). — J. Ind. Inst.
Sci. 37, 195 (1955). - S. PANCHARATNAM: Proc. Ind. Acad. Sci., A 41, 130, 137 (1955); A 42
86, 235 (1955); A 44, 247, 398 (1956); A 45, 402; A 46, 1, 280 (1957). — G. DEsTRIAU and
J. ProuTEAU: J. Phys. Radium 110, 53 (1949).

4 G.N. RAMACHANDRAN and S. RAMASESHAN J. Opt. Soc. Amer. 42, 49 (1952).

® H.G. JErR24RD: J. Opt. Soc. Amer. 44, 630 (1954).

¢ U.Faxo: . Opt. Soc. Amer. 39, 859 (1949). — G.N. RAMACHANDRAN and S. Rama-
SESHAN: J. Opi. Soc. Amer. 42, 49 (1952).

1%



4 G.N. RAMACHANDRAN and S. RaMasesHAN: Crystal Optics. Sect. 2.

which is transmitted by this analyser. It is well known that a 4/4 plate with its
slow axis OA, (Fig.3b) at azimuth A4, followed by a linear analyser NV at an
angle w, to the slow axis, constitutes an elliptic analyser 4. The action of the
A/4 plate is to reduce the ellipse 4 into a linear vibration parallel to the linear
analyser and the ellipse 4, (antlpodal to A4) to a:linear vibration perpendncular
to it. When light of polansatlon P is incident on this analyser it is easily seen
that the light transmitted by it does not depend on the construction of the ana-
lyser, for an elliptic vibration P can be resolved into two orthogonal vibrations 4
and A, in one and only one way, the intensity of the former component being
transmitted by the analyser 4. Hence without any loss of generality we may
use the specific analyser described above for deducing the magmtude of the
fraction transmitted.

This is done by resolving the incident light into two linear components P,
and P, parallel to the axes of the ellipse, the latter lagging in phase by z/2. Thus
the displacements along these two directions are for unit intensity

#p =COSWp, Up = — iSinwp. (2.1)

The incident light resolved along 04, and 04, (the axes of the quarter wave
plate) is therefore given by

%y, = coswpcos & + i sinwpsin §, (2.2)
4, = COS WpSin & — i sinwpcos & ’
where (Fig. 3b)
= (Ap— A4).

On passage through the 1/4 plate a phase retardation /2 is introduced between
the vibrations along O A4; and 04, and finally the linear analyser resolves the
vibration into the plane ON giving the intensity transmitted by the analyser as

Ug=1U,y COSW 1%,y SINW,. (2.3)
Thus the intensity transmitted by the analyser is
| %4]? = cos? § cos? (w4 — wp) + sin?&sin? (w, + wp) .
This can be transformed, after some manipulation, into the form
|41 =3 -+ [§sin 20psin 2w, + F cOS 2wpC0os 2w, oS 2 (Ap— A4)].

From the spherical triangle L P4 of Fig. 3a we have the quantity within the
square brackets to berequal to cos PA, so that

|#42=%-+4cos PA (2.4)
or

[#4]2 =cos?§ PA. (2.5)

Thus, the fraction of the intensity of light of the polarisation state P which
is transmitted by the analyser 4 is cos® # P4 where P4 is the length of the arc
joining P and 4 on the Poincaré sphere. This elegant result has a number of
important applications, as will be seen below.

In particular, it is seen that if PA =u, i.e., the states of polarisation P and 4
are represented by opposite points on the Poincaré sphere, then no light is trans-
mitted. Thus, these two states are orthogonal to one another. An analyser 4
transmits completely light of state 4, while it. completely cuts out light of state



Sect. 3. Effect of linear birefringence represented on the Poincaré sphere. 5
A,, A, being the point antipodal to 4. When arc PA varies from 0 to z the
transmitted fraction decreases from unity (P coincident with 4) to zero (for P
opposite to 4). In particular, if 4 is a linear vibratigm, then t_he state 'A, cor-
responds to the perpendicular linear vibration. If 4 is a left circular vibration
corresponding to L, the orthogonal state is a right circular vibration, then A4,
corresponds to R. If A corresponds to a general ellipse, then the orthégonal
state A, is the corresponding “‘crossed” ellipse which has its ma]or.and minor
axes interchanged with respect to the former and has also the opposite sense of
description. ' . ] . '

In many applications, one is interested in the variations in the intensity of
light transmitted by an analyser set close to extinction. In such a case, it is

more convenient to consider the smaller arc P4, rather than the larger arc PA

which will be nearly # in value. The fraction of the intensity transmitted is then

given by . .

t,=sin%4 PA,. (2.6)
3. Effect of linear birefringence represented on the Poincaré sphere, In crystal

optics a common problem that occurs is the following: When a beam of particular

state of elliptic polarisation (P,) is incident on L

a crystal plate, what will be the intensity and

the state of polarisation P; of the emergent

light. The crystal resolves the incident light

into two specific polarised beams in different I

states of polarisation which are propagated with '/ﬁ’::/——\\ e V0

different velocities and, if the crystal isabsorbing, o v i A

with different absorption coefficients. In the ¢ pe ‘

case of a transparent crystal, the component 2

beams will be in opposite states of polarisation L Uik

A,A,. When the specific states of opposite f

polarisation are linear, circular or elliptic, we %

\

shall refer to the medium as linearly, circularly
or elliptically birefringent. One of the important
results of the Poincaré representation, which
makes it so.useful in crystal optics, is that the
state P, of the emergent light can be obtained

R
Fig. 4. Bffect of linear birefringence. A phase
diffe & introduced betw: two linear
orthogonal states M 4nd, N is equivalent, to
an anti-clockwise rotation through an angle
&’ about the faster state M.

from the state P, of the incident light by the

simple geometrical operation of rotating the sphere about the axis 4 4, through
an angle 4, where 4 is the phase advance of 4 over 4, introduced by the
crystal. We shall first consider the case of a linearly birefringent medium.

Let the two linear states of polarisation which are propagated unchanged
through the medium be H and V (Fig. 4) and let the phase difference introduced
between them due to the passage through the medium be 8, H leading V by 4.
Suppose unit intensity of linearly polarised light at azimuth 8 represented on
the equator by P (HF, =24 in Fig. 4) be incident on the crystal. This may be
resolved along H and V giving the components cos 8 and sin . Let this be
converted into an elliptical beam represented by the point P, as a result of the
phase difference 8 introduced. Let this ellipse have an azimuth A and ellipticity w.
Resolving the vibration along H and V, we have, for unit intensity, the two
amplitudes to be

(1)

(3-2)

#; = cosw cos A + {sinwsin 4,

%y =coswsin A —isinwcos A, -
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while their phases ¢ and ¢, are given by
tang = tanwtan i, (3.3)
tan &, = — tanw cot 4. (3.4)

The amplitudes of the two components must be equal to cos # and sin g, so that
we have

cos? B = cos?w cos? A + sin?wsin? 4, (3.5)
sin? 8 = cos?w sin2 A + sin? @ cos? 4. '
The two equations are equivalent and .can be put in the form
cos:2f3.= cos 2w€0s 2 4. (3.6)
The phase difference between :the twoiis given by
= & — &,
so that
tan (g — &) = 1—i i::‘:"; ;f,(ta,n A+ eot 2) (3.7)
and
tan § = tan 2w/sin 21. (3.8)

We thus have two relations (3.6) and (3.8) between the quantities w, A and g, 4.
They can be interpreted very simply by saying that the point P, is obtained from
P, by rotating it about the axis H V through an angle §. Both Egs. (3.6) and (3.8)
can be verified to hold between the elements of the right angled spherical triangle
HP K (Fig. 4).

Thus, starting from the linear polarisation state P, the effect of introducing
a phase difference é between the components H and V (H leading V¥ by 8) is to
rotate the representative point about the axis HV by an angle §, measured
anticlockwise looking from H to V. It follows from this that, if the initial state
is represented by a point P,, now considered as a general point, then the effect
of a phase difference 4’ between H and V is to bring P, to P, by a rotation through
an angle ¢’ about HV.

So also, if the phase difference 8’ is not between the linear states H and V
but between the two states of linear polarisation of azimuth « and « 4 7/2 re-
presented on the Poincaré sphere by points M and N, of longitude 2a«, & + 2«
on the equator, the representative point is rotated by an angle 4’ about the
axis MN (from P, to Fy).

Similarly, if a phase difference J is introduced between left- and right-circular
vibrations, the effect can readily be shown to be equivalent to rotating the sphere
through an angle § about LR. Suppose the incident beam is linearly polarised
parallel to OX, represented by the point H on the equator. Following FRESNEL,
we may resolve the linear vibration into two circular vibrations (which are in
phase along OX). If the left rotating circle (L) is advanced in phase by /2 while
the other (R) is retarded by /2 (phase difference =4), it may be shown that
the two together will produce a linear vibration at azimuth §/2. The correspond-
ing representative point remains on the equator, but is at longitude §. It is
obtained from the original state by a rotation through an angle § about LR.
The proof is directly generalised to any linear vibration. Considering any ellipse
as made up of two linear vibrations at right angles but with a phase difference
of /2, it will be seen that both components will be rotated by /2 by introducing
a phase difference of 6 between L and R. Thus the axial ratio of the ellipse is



Sect. 4. Coherent addition of polarised beams. ; 7

unaffected, but its azimuth is rotated® by 4/2; the latitude of the representative
point on the Poincaré sphere is unchanged but its longitude increases by 4. This
is equivalent to rotating the point through an angle 4 about LR. .

~ Thus, the effect of lingar or circular birefringence, and the consequent intro-
duction of a phase difference d between two orthogonal linear or circular states
of polarisation, can be determined by finding the gffect qf a rotation of the
Poincaré sphere through an angle 8 about the appropriate axis of rotation. These
results are in fapt’consequences of even more general properties regarding the
addition of any two orthogonally polarised beams (see Sect. 4).

4. Coherent additiqn of polarised beams®. o) Direct interference of two _polan'sed
beams. Suppose we have a pair of orthogonal analysers 4 and 4,. Then it follows
from the results (3.4) and (3.5) that the inten-
gities transmitted by the two analysers would
be constant for g‘ll states of polarisation (P) for

which the arc P4 (and therefore also the arc /
I/??l,,) is the same. Thus, the locus of points on
the Poincaré sphere representing the states of
polarisation for which a definite fraction f is
fransmitted by the gnalyser 4 is a small circle of
centre A and radius PA where 3
cos”}ﬁ:/. (4.1)
For all.these states, the analyser 4, will transmit Fi. §. Cobesint aiition ot poliTsed besss,
8 fraction When a beam of intensity I and auy state 7
o . is decomposed into two. beams in the states
cost} PA, =sint} FA =1 . A e

is the supplement of half the area of th=
The above result may be used to work out triangle F £y P,.

the resultant of the coherent addition of two

beams of polarised light, say 1 and 2, whose states are represented by points 2,
and P, on the Poincaré sphere (Fig. 5) and whose intensities are I, and I, re-
spectively. The resultant is the state P. Denote the arcs PP,, PP, and P, P,
by 24, 2b, 2¢ respectively, and similarly the arcs P, P, and P P, by 2a', 2b" rte-
spectively. Let P, be the state opposite to P, and resolve the beam 2 into the
state B and B, the intensities of which will be I » cos?c and I, sin? ¢ respec-
tively. The intensity of the resolved component of the combined beam along P
may be obtained by the usual formula for combining two vibrations in the same
state. The resultant intensity is

Ip =1, 4+ I,cos?c + 2 V_I;—f; cos ¢ cos 4. (4.2)
The intensity of the resolved component of the combined beam in the state P is
Ipu=125in20. (43)

Since the beams of intensity I and I5, are orthogonal, the resultant intensity
is just the sum of the two, independent of the phase difference between them.
Thus,

I =I,+12+2Vfl_l;cosccosé (4.4)

.1 This uses the fact that the phase difference between the components is unaltered by the
gperation of rotation. We shall not prove this, as a general proof for elliptic birefringence is
given in Sect. 4.

1 8. PANCHARATNAM: Proc. Ind. Acad. Sci. A 44, 247 (1956).
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and we may conveniently refer to § as the phase difference between the two

beams themselves though they are in different states of polarisation.
Now, the intensities of the resolved component of the resultant I in the state
P,, and of I, also in the state P, must be equal, since P, is orthogonal to P,,.

Hence
I'sin?b = I sin?c

or

I, = Isin? d/sin%c. (4.5)
Similarly,
I, =Isin%afsin?c. (4.6)
Hence ) .
c0s 8 — I/—_I_l--I, _ smzc'—sufsb-—sm.g_ (4.7)
2)I,I,cosc 2sinasinbcosc
o AE cos?¢ —Icoszﬁ_— cos?a’ (4.8)
2cosa’cosb’cosc
or
cosd =cos § ¢’ (4.9)

where &' is the spherical excess or area of the spherical triangle P, P, P, which is
colunar to the triangle P P, P,. Thus

d=mt ¢ (4.10)

In particular, when 6 =0, 3¢’ =z or the spherical excess is 2. The points P
and P, must then lie on the great circle passing through P, and P,, P lying on the
shorter arc P, P,.

Thus, given I;, I, and §, one can first calculate 7 from Eq. (4.4) and then the
spherical arcs 2 and & from Egs. (4.5) and (4.6) which immediately fix the re-
presentative point P of the resultant, except for an ambiguity in the sign of 9,
which is present also in Eq. (4.10). The ambiguity can be removed by a consider-
ation of the combination of orthogonal states and a comparison with the conven-
tions adopted in Sect. 3.

Suppose P, tends to the point P,, i.e,, 2c—z. Then, the triangle P, PP,
becomes a lune in the limit (Fig. 6a). Denote the angle between the great circles
P, P,P,,and P, PP, ,at P as 4. Then the spherical excess of the colunar triangle
is ¢’ =2(x—A). Thus, we have

A4 =406. (4.11)
Further since the beams are orthogonal

I=1I+1, (4.12)
and

1,/I =sin?b = cos?a, |
7] — sin? 5 ( (4.13)
o/ =sin%?a = cos?b. |
If the phase relationship is kept constant and 7,//; is altered, the resultant state
moves along the locus for which 4 is constant i.e. along a great circle (e.g. P, PP,
of Fig. 6a). On the other hand, if the ratio 7,/J; is given and the phase difference ¢
is varied, then the resultant occurs in a small circle whose axis is P, P, (i.e. B, P,,).
It is however necessary to define the condition when the two have the same phase,
which may be done by taking some great circle through P, P, as the standard
of reference (say the one marked é =0 in Fig. 6a). Then, for any given &, the
resultant P lies on a great circle rotated from the standard through an angle 4.

Thus two position are possible corresponding to 4 = - 4.



Sect. 4. Coherent addition of polarised beams. 9
We have already shown (Sect. 3) that for the case of linear birefringence, the
upper positive sign is to be taken if P, leads P, in phase. From considera.tlons of
analytical continuity the same must be true for adjacent axes of rotation and
hence for any axis of rotation of the Poincaré sphere. We have th.us _prov_ed the
proposition stated in Sect.3 namely that ghe effect of any elliptic ‘Inrefnngence
is represented by an anticlockwise rotation about the point representing the faster
.state. »
This result for orthogonal vibrations may be used to resolve the ambiguity
in (4.10) for the case of non-orthogonal vibrations by the method of analytical

continuity, giving
6:7!-—'%6’ (4-14)

Fig.6a and b. Locus of the resultant state of polarisation P when the ratio of the intensities of two beams F; and P,
or their phase difference is varied the cther remaining constant. (a) States B, P, of the combining beams are orthogonal.
(b) States P,, P, non-orthogonal.

where ¢’ is to be counted positive if the sequence of points P, P, P, (and therefore
the sequence P, P,P) is described in a counter-clockwise sense on the surface
of the sphere.

The necessity for defining the condition of zero phase difference occurs only
in the case of orthogonal vibrations because one cannot be “resolved’” into the
other. When P, and P, are not orthogonal, then the resolved component of one
along the other can be compared for specifying their phase difference. The result-
ant intensity is then a maximum, when the phase difference is zero as seen from
Eq. (4.4), and the resultant state of polarisation lies on the arc P, P, directly join-
ing P, and P,. When the two beams are opposité in phase, the intensity is a mini-
mum and the resultant state lies on the greater segment (P, P, P,) of the great
circle through P, and P,.

It follows from Egs. (4.5) and (4.6) that, when the phase difference between
the two beams is altered without altering the ratio of their intensities, then
sin%q/sin?b is a constant. The locus of P is then a small circle, with its centre
on the great circle through P, and P, (Fig. 6b). On the other hand, if the ratio
of the intensities is altered, keeping the phase difference constant, then &' is a
constant, and the locus of P is again a small circle, but passing through P, and P,,
with its centre of the great circle which is the perpendicular bisector of the arc
P, P, (Fig. 6b). When P, and P, are orthogonal, the former family of small circles
are all perpendicular to the diameter P, P, and the latter all become great circles
passing through P, and P, (Fig. 6a).

B) Interference of two beams after vesolution by an analyser. Given a vibration
in state P, (Fig. §) its resolved components in the orthogonal states P and P,
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can be said to be in phase by choosing the arc P P, P, as the standard arc defining
the zero of phase difference for two orthogonal states. Considering a secand
vibration in state P,, let us also resolve it into its components in the states P
and P,. Let &' be the phase advance of the P-component of the vibration in state
P, over the P-component of the vibration in state F;; and similarly let " be the
difference in the phases of the P,-components of the vibrations in states P,
and P, respectively. Then from a consideration of the results of the preceding
sub-section ,

4

6' — du =f) : ) (4_‘5)

where P is the angle PlI?’P,, counted positive if (on looking from P to F,) an
anticlockwise rotation brings arc PP, to arc P F,.

The result of the last paragraph may be used to discuss a problem of common
occurrence in crystal optics (see e.g. Chap. C). Two beams 1 and 2 initially of
intensities I; and I, and in states of polarisation P, and P;—the first having
a phase ddvance & over the second—are made to interfere after transmission
through an analyser which resolves them to the same state of polarisation P.
(Note that in the present context P does 7ot represent the resultant state obtained
by directly compounding the beams 1 and 2.) The P-components of the beams
of polarisation P, and P; will have intensities I, cos?b and I, cos*a respectively
and our main problem in this section is to determine their phase difference ¢'.
The intensity transmitted by an analyser P is then given by

Ip=1Icos*b +I,cos’a+2VIII,éosaoosboosd'. (4.16)
Similarly the P,-component of the resultant beam will have an intensity
Ip,=1I,sin?bh + Iysin®a + 2 JI, I sin asin bcos 8”. (4.17)

The intensity I of the resultant beam, obtained by directly compounding 1 and 2,
is obtained by adding (4.16) and (4.17) using (4.15):

I'=1+ I3+ 2}I,1,{cosacosbcosd’ + sin asin b cos (6'-—?’)}.

By applying the standard expressions for the spherical excess of a triangle this
reduces to

I=I+I,42)I I cosccos (8 + % ¢) (4.18)

where ¢ represents the area or spherical excéss of the triangle P P, P, itself (counted
positive if the sequence of peints P, P,, P, describe the periphery of the triangle
in a counter-clockwise .

Comparing (4.18) with (4.4) we obtain the interesting result that if two beams
initially have a phase difference 4 then after passage through an analyser their
phase difference becomes

O'=0—fe, (4.19)

i.e., an additional phase difference — ¢ is introduced in the process of analysa-

tion. The intensity transmitted by the analyser (i.e., the intensity obtained by

the interference of the resolved components) is obtained by substituting (4.19)
in (4.16):

Ip=I'1cos’b+I,cos'a+2VI1_I;cosacosbcos(6—}3). (4.20)

The limiting case when the states of polarisation P, apd P, become oppositely

polarised is of particular importance (Fig. 6a). In this case, if the beams have
been originally derived by the decomposition of a beam in state P’, we must
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take the great circle P, P'P, as defining the condition of zero phase difference.

It follows from (4.19) (since & becomes now the area of a hune) that on passing-
through an analyser P the resolved component of the first beam lags behind
that of the second by an angle 4 which denotes the angle P P, P* (measured posi-
tive in a counter-clockwise sense). Thus, for example, when two circularly
polarised beams in opposite states are incident on a lnear (or elliptic) analyser,

the phase difference between the transmitted beams is altered by 26-when the-
azimuth of the analyser is rotated (as a whole) through an angle #—a result which
finds application in certain types of phase-contrast microscopes which use
crystal-optic elements?,

5. Propagation of light through an optical system (no absorption). a) Non-
absorbing optical elements of infinitesimal thickness. We wish to investigate the
change in the state of polarisation of a beam of light of polarisation state P as
a resuit of its passing through a number of optical elements. Each element is con-
sidered to be either (a) a parallel plate of birefringent material, with principal
planes oriented at an arbitrary azimuth, or (b) an optically active material, which.
only rotates the azimuth of the elliptically polarised beam. Systems of this type
were considered by JoNrs? making use of a matrix calculus and his papers may
be referred to for examples and for further details. The matrix method of Jawes
is also discussed in Sect. 12. The overall effect can however be readily worked
out by the use of the Poincaré sphere. ‘

Before proceeding to the general case we shall first consider a special case
of such combination, which is of particular interest, viz., when the effect of each
optical element is infinitesimali in magnitude. An example is that of a birefringent
optically active crystal. Although strictly the medium must be considered to
have the properties of both birefringence and optical activity and should be
treated as such in a rigorous theory (see Chap. B), one may also picture the erystal
to be made up of altermate infinitesimal layers of equal thickness exhibiting
alternately, only linear birefringence and only optical activity. A thickness 4z
of the optically active birefringent medium can on the above picture be regarded
as a linearly birefringent element producing a retardation dé=4’dz, and an
optically active element producing a rotation dg =p’ dz where ¢’ and @' define
respectively the retardation per unit thickness in the absence of optical activity
and the optical rotatory power in the absence of linear birefringence. Suppose
the principal axes of the birefringent element are at azimuth a and « +x/2,
represented by M and N (Fig. 7) of which M is the faster axis. Then the effect
of passage through these two optical elements is to rotate the Poincaré sphere
through angles dd and 2dg in an anti-clockwise direction about M N and LR
respectively (Fig. 7). The addition of two infinitesimal rotations follow the law
of vectorial addition and the resultant is independent of the sequence and is a
rotation -through an angle d4 = |/(dd)® + (2d)? about the axis EF which is in
the plane of M N and L R and makes an angle 2y with N M where

2dp 29"
2y = arc tan- 2—;;-— == arc tan ’S"_' (5.1)

For wnit thickness of a birefringent, optically active crystal, the resultant effect
is an anti-clockwise rotation of the Poincaré sphere through an angle

o A" =18'% + (20)* (5.2)

! See e.g. BENNETT, Os1ERBERG, JUPNIX and RicHarDs: Phase Microscopy, Chap. 3.
New York 1951.
? R.C. JonEs: J. Opt. Soc. Amer. 31, 488, 493, 500 (1941).
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about the axis EF, where the elliptic state E is propagated with the faster
velocity. .

Thgs, the most general type of non-absorbing crystal (or optical element). is
one which leads to a rotation of the Poincaré sphere about an axis EF, which
is neither the polar axis LR nor does it lie in the equatorial plane. A'nalog.ou§ to
the purely birefringent crystal, in which linear vibrations par'allel to its principal
directions are propagated unchanged, and the purely optically active .crystal
without birefringence, in which L and R are propagated unchanged, light of
polarisation states E and F will be propagated
unchanged in this crystal. This is so because a
rotation of the sphere about EF leaves E and F
unchanged. These states are two crossed ellipses
which are orthogonal to each other.

In such a crystal, incident light of arbitrary
state of polarisation P, is split up into the two
orthogonal elliptical states E and F, which are
propagated unchanged in state, but with a re-
lative phase retardation A’ per unit thickness.
On emergence, they recombine, and the resultant
state P is obtained from F, by a rotation of the
Poincaré sphere about the axis EF, as shown in
Sect. 4. The optical phenomena in such crystals
are treated in Chap. B.

Since the emerging waves are orthogonally

2’ - polarised they do not interfere and the emergent
¥ P 14 intensity will be the same as the incident inten-
sity. The crystal will therefore be transparent
as is to be expected. Vice versa, the operation
F— for a thin layer of any non-absorbing optical
. SR element must necessarily be a rotation through
i,:ﬁ'ibﬁm?gﬁfﬁfgme andb;rt?cl:lsaqg{;i_'g! an infinitesimal angle d4 =A4’dz about some

1f &' is the phase diff due to birefrin- . - ’ ;
stmcs alone and o' the optical rotation in ~ axis EF. This can be resolved into three in-
k: Jotatie

the absence of bi L 3 : .
effect is a rotation of the Poincaré sphere finitesimal rotations dAl’ dAz, dAa about the
through an angle 4’ about the axis EF. axes HV, CD, and LR respectively. These axes

correspond to the co-ordinate axesOU, 0V, 0W
in Poincaré space (Fig.2). Thus, the effect of a general infinitesimal (non-
absorbing) optical element on the state of polarisation of light passing through
it is describable by means of three infinitesimal rotations about OU, OV and OW.
B) Combined effect of a series of transparent plates. We now return to the
problem stated at the beginning of the section, viz., the passage of polarised
light through a series of transparent parallel plates of finite thickness. For a
linearly birefringent plate producing a relative phase retardation §, the effect
is to rotate the Poincaré sphere about an axis in the equatorial plane through
the angle . The orientation of the axis is known from the orientation of the
principal plane. So also, if g is the rotation produced by the optically active plate
(o is positive for left-rotation), then the effect is to rotate the sphere through an
angle 2p about LR. (If the system also contains plates possessing both linear
birefringence and optical activity, the effect of any such plate is to rotate the
sphere about a given axis EF through a given angle 4.)
The resultant of two successive rotations about two axes is again a rotation
about some other axis of the sphere which may be determined either analytically
or graphically by the construction illustrated in Fig. 8. The combined effects



