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Preface

The contents of this book are based on lectures and discussions given at the
‘Software for Numerical Mathematics’ conference held at Loughborough
University of Technology in April 1973 under the sponsorship of the
Institute of Mathematics and Its Applications. The conference was attended
by some 220 participants drawn from fifteen different countries representing
both academic and industrial interests.

The aims of the conference were to provide a forum for the exchange of
ideas and information on the analysis, development, construction,
evaluation, communication and usage of numerical algorithms—a rapidly
expanding discipline intended to support the many areas of computer appli-
cations in mathematics, science and engineering. It was thought that the most
effective way of emphasising attention to this important area was by
bringing together in a meeting such as this, people of relevant experience
currently making everyday contributions to the field.

In the conference organisation, I was ably assisted by a committee which
consisted of' J. R. A. Cooper, B. Ford, A. R. Gourlay and M. J. D. Powell
who discharged their duties by arranging a conference programme divided
into sessions in which eminent speakers were invited to give survey lectures
to cover the basic issues of the topic, whilst a smaller number of research
papers of a specialist nature was selected from people wishing to participate
in the conference. After each presentation the floor was open for informal
discussions in order to achieve as much cross fertilisation of ideas as possible.

These proceedings could not have been published so quickly without the
co-operation of the lecturers who bresented their papers lucidly and made
them available for publication on time. Essentially, the content of each paper
is the responsibility of the author concerned although I have made slight
changes where necessary to aid clarity and presentation. The discussions,
with some editing, have also been included to complete the proceedings.

I should like to conclude by acknowledging the support given by the
Institute of Mathematics and Its Applications for the skilful arrangement of
the many financial and domestic details in the administration and organisation
of the conference, the Conference Committee, the Session Chairmen and to
Dr. J. Wilkinson, F.r.Ss. and Professor L. Fox who provided wise counsel
throughout the planning of the conference.

D. J. EVANS
Loughborough, December 1973.
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1. Theory of Optimal Algorithmst

J. F. TRAUB

Department of Corhputer Science
Carnegie-Mellon University
Pittsburgh, Pa., U.S.A.

1. Introduction

Recent progress in the theory of optimal algorithms has led to new algorithms

as well as theoretical bounds on the efficiency of any possible algorithm.
Historically there have been three major stages in the development of

algorithmic analysis. They are:

1. Synthesis of an algorithm

2. Analysis of an algorithm

3. Analysis of a class of algorithms. .

Initially the emphasis was on the synthesis of an algorithm. The second
stage commenced around 1947 with the very careful analysis of particular
algorithms. Within the last 10-15 years people have been looking at classes of
algorithms and trying to find the best. This trend has recently accelerated and
there is now tremendous interest in analyzing classes of algorithms in terms of
computational complexity.

There are many reasons for studying computational complexity of which
the most important are:

1. Constructing “‘good” new algorithms.
2. Filtering out ‘““bad” algorithms.
3. Creating a theory of algorithms which will establish theoretical limits
on computation.
To discuss optimal algorithms we need a measure of cost. The measure
used throughout this paper is the total number of arithmetic operations,
+, —, X, +. Gentleman (1973) and Reddy (1973) have discussed some of the

T This research was supported in part by the National Science Foundation under Grant
GJ32111 and the Office of Naval Research under Contract N0014-67-A-0314-0010, NR
044-422.
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2 J. F. TRAUB

other components of the cost which might be included. Other properties
of a numerical algorithm, such as stability and domain of convergence, are
critical. Measures of cost deserve more refinement.

2. Algebraic and Analytic Computational Complexity

We want to distinguish between two types of algorithms. The dichotomy
depends on the nature of the underlying mathematical problem. A mathe-
matical problem can be finite or infinite. Examples of finite problems are
matrix multiplication and polynomial evaluation. Examples of infinite
problems are the solution of an elliptic partial differential equation and the
calculation of a polynomial zero.

Optimality theory for finite problems will be referred to as algebraic
computational complexity, optimality theory for infinite problems as analytic
computational complexity. Some examples will be given of work from each
domain.

3. Recent Results in Algebraic Computational Complexity

Borodin (1973) gives a survey of the enormous recent activity in algebraic
complexity, We will confine ourselves to some very recent results which
deal with one set of related problems.

The problems are:

1. Polynomial multiplication. Given two polynomials of degree n, to find
the product polynomial.

2. Polynomial division. Given two polynomials of degree n and 4n, to
find their quotient and remainder. More generally we divide a polynomial
of degree n by a polynomial of degree m. The choice of m = 4n makes
the “size” of the problem depend on just one parameter.

3. Polynomial interpolation. Given (x;,y), i=0,1,...,n. Find P(¢)
such that P(x;) = y,.

4. Evaluation of a polynomial at many points. Evaluate an nth degree
polynomial at n + 1 points given simultaneously.

5. Evaluation of a polynomial and all its derivatives. Evaluate an nth degree
polynomial and all its derivatives at one point.

These problems take O(n?) operations classically. Using “fast’ algorithms
the first two problems can be done in O(n log n) operations while the next
three problems can be done in O(n log® n) operations. Fast polynomial
multiplication is done with the Fast Fourier Transform. Other fast
algorithms are due to Moenck and Borodin (1972), Strassen (1973), and

Kung (1973). Borodin (1973) summatizes the state of the art in fast
algorithms.
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The results above are asymptotic. They are only significant for rather
large values of n. For example n? is smaller than # log? n until 7 is somewhat
greater than 30. (All logarithms are to base 2.) Furthermore, analyses ignore
asymptotic constants which can prove significant if n is not too large
{Borodin, 1973).

The following is an example of a new algorithm which is better than the
best previously known algorithm, not just asymptotically, but for all n.
Given

P(t)=3 a,_;V,
j=0

and a number x, the problem is to calculate the normalized derivatives
PO(x)/j!, j =0, ...,n. The standard algorithm is some 150 years old and
appears in most numerical methods texts. It is known as the iterated Horner
rule or a synthetic division. This algorithm can be written as

Tl'_l"—'ai+1a i=0a1"”)n—13
T =a, j=0,1,...,n,

J

T, =T/ +xTi, j=0,1,...,n—1i=j+1,...,n
It is not difficult to verify that

pw» .
j!(x) =TJ, j=0,1,....n

Observe that the first two lines of the algorithm define initial conditions.
All the work is done in the recursion of the last line. The recursion is done
in(n + 1) times and there is one addition and one multiplication per step.
Thus the iterated Horner algorithm requires 4n(n + 1) multiplications and
in(n + 1) additions.

Consider now the following algorithm.

7;_1=ai+1xn_i~l, i=0,1,...,n—l,
T/ =ax", j=0,1,...,n 3.1
T =T '+T., Jj=01,..,n~1,i=j+1,...,n

It may be shown (Shaw and Traub, 1974a) that

P(j)( x)
J!

=x7ITJ,  j=0,1,...,n—1.

In this algorithm all the multiplications are done as part of the initial
conditions. The recursion involves additions only. The normalized derivatives
are obtained by division using the x’ calculated as part of the initialisation.
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Thus this algorithm, which is just as simple as the iterated Horner rule,
yields the normalized derivatives in 3n — 2 multiplications and divisions and
in(n + 1) additions. The algorithm is of practical utility. It is also of
theoretical interest since it demonstrates that only a limear number of
multiplications and divisions are needed.

The problem posed here is a special case of the problem of calculating
m derivatives of an nth degree polynomial. The algorithm presented above is
a member of a one-parameter family of algorithms (Shaw and Traub, 1974a).
The optimal choice of the parameter as a function of m and n is discussed by
Shaw and Traub (1974b). Stability of these algorithms is established by
Wozniakowski (1973).

4. An Efficiency Measure

The remainder of this paper deals with analytic computational complexity.
Recent research includes the complexity of elliptic partial differential
equations (Eisenstat and Schultz, 1973) and the complexity of systems of non-
linear equations (Brent, 1973). A more extensive bibliography may be found
in Traub (1972). -
- We confine ourselves here to the problem of calculating a real simple
zero a of a real function f. This zero-finding problem may seem rather
specialised, but it is equivalent to the fixed-point problem, a ubiquitous
problem in mathematics and applied mathematics. It may be formulated
in an abstract setting and covers partial differential equations, integral
equations, and many other important problems, Traub (1972) and Kung
and Traub (1973a, 1973b) may be consulted for the results reported in the
rest of this paper and for proofs of the theorems.

Consider iteration algorithms for approximating «. Let the x, be generated
by an iteration function ¢,

Xig1 = ¢(x)

To define an efficiency measure for ¢ we need measures of goodness and cost.
As the measure of goodness we use the order p defined as follows. If

lim G

Xi=a (xi - a)p

=S#0

then p = p(¢) is the order of convergence.

The cost consists of two parts: the evaluation cost and the combinatory
cost. Let ¢ use v, evaluations of f@. If f@ If £ is rational, let o(f®)
denote the number of arithmetic operations for one evaluation of f@;
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otherwise let c(f?) denote the number of arithmetic operations used in the
rational subroutine which approximates f). Then

Evaluation cost = ). v;¢(f®).
i20
Let a(¢) be the minimum number of arithmetic operations to combine
the /9 to form ¢ by any procedure A. Then
Combinatory cost = a(¢).

Finally, the cost of performing one iteration step is
2 0:c(fP) + a(9).
i20

We define the efficiency e(¢, f) of the iteration ¢ with respect to the
problem f by

_ log p(¢)
D= B @

A discussion of this efficiency measure, including its relation to other
efficiency measures, is given by Kung and Traub (1973b). Here I will only
point out that earlier measures (Traub, 1972) did not include the combinatory
cost a(¢)) and that inclusion of combinatory cost is crucial.

The efficiency measure has the following two properties:

“.1)

1.1t is invariant under composition.
2.1t is inversely proportional to total cost.

The first property can be written as

e(¢'¢,f)=e(¢,f),

where ¢ - ¢ denotes performing the iteration ¢ twice. This says that a sequence
and a subsequence have the same efficiency. The second property is stated
more precisely as follows. Let ¢4, ¢, be two iterations used to approximate
a to within a certain accuracy. Let the total cost of ¢; be W,. Then

@) W
e(dz, ) W, )

Let
¢; = min c(f ).

iz0

In this paper, we refer to ¢, as the problem complexity. Let

() = ’Z v; (4).

20
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Clearly, v(¢) is the total number of evaluations used in ¢. Then by (4.1),

log p(¢)
€ ——. 4.2)
D) <5 @es + a@) 42
This will be useful for obtaining upper bounds for (¢, f).

The optimal efficiency depends on the family ® to which ¢ belongs. Our
classification for ¢ depends on the information required by ¢. We can
distinguish between iterations with or without memory. We restrict ourselves
here to iterations without memory. That is, the new iterate x;, , is computed
using information only at the current iterate x;. For iterations without
memory we distinguish between one-point iteration and mulitipoint iteration.
Roughly speaking, if f or its derivaties require evaluation at k points in
order to generate a new iterate by the iteration ¢, then ¢ is a k-point iteration.
In-particular, if k = 1 we call ¢ a one-point iteration and if k > 1 and the
value of k is not important we call ¢ a multipoint iteration. This
terminology was introduced by Traub (1964). Precise definitions are given
by Kung and Traub (1973a).

The following two examples illustrate the definitions.

Example 4.1, (Newton-Raphson Iteration)

S )
OR

This is a one-point iteration with p(¢) = 2, vo(¢) = v,(¢) = 1, and a(¢) = 2.
Hence

() (x) = x—

1
e, f) = D)2’
1
eé. N < 2c,+27 .
Example 4.2 |
Zo = X,
f(20)

zl = Zo _'f'(zo) y

L, f@)fGE) [
PN ) =2 = ey = Tl )
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This is a two-point iteration with
Py =4v(d) =2, v(¢)=1 and a($)=38.
Hence 2
R T

2
3¢, +8°

e(¢, f) <

Given an algorithm ¢ and a problem f, we can use e(¢, f) as defined
by (4.1) to calculate efficiency. We are also interested in the optimal
efficiency of a class of algorithms. This motivates the following definitions.

It is natural to ask for a given problem f what is the optimal value of
e(¢, 1) for all ¢ belonging to some family ®. Define

E(®, /)= sup {e(@, /) v(¢) = n}.

Thus E,(®, f) is the optimal efficiency over all ¢ € ® which use n evaluations.
Define

E@®, f) = sup{E,(®, /) [n=1,2,...}.

Thus E(®, f) is the optimal efficiency for all ¢ € ®. We will establish lower
and upper bounds for E(®, f) and E(®, f) with respect to different families
of iterations. When there is no ambiguity, we write E, (@, f) and E(®, f)
as E,(f) and E(f), respectively. Since in practice we are more concerned
with efficiency for problems f with higher complexity, we are particularly
interested in the asymptotic behavior of these bounds as ¢ ;= 0.

5. Efficiency of Gne-Point Iteration

The iterations most used in practice are one-point iterations. We derive
lower and upper bounds on the efficiency of any. one-point iteration.

We consider a particular family of one-point iterations {y,}. The first
three members of this family are given by

Y =X
_., _ X
Y2 71 700
@[T
e 2f’(X)[f’(x)]'
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The family 7, has been thoroughly studied (Traub, 1964, Section 5.1). Its
important properties from our point of view are summarized in the following

THEOREM 5.1 .
Lo@p)=1 i=01,...,0~Lv{y,)=0,i>n-1.
Hence v(y,) = n. ' :

2.p(a) = 1.
It can be shown (Kung and Traub (19?35)) that
a(y,) < pn*logn (68))
for some positive constant p- By (5.1) and Theorem 5.1,

16g n

(s f) 2 5= (5.2)

; c(f 9 + pn*logn
iz0

For n small, a(y,) can be caléulatéd by inspection. Thus a(y,;) = 7 and

log 3
N +ef)+e(fH+T

We now turn to general one-point iterations. Let ¢ be any orie—point itera- .
tion, with v(¢) = n, which satisfies a mild smoothness condition. Then
by Traub (1964, Section 5.4), Kung and Traub (1973b, Theorem 6.1), v,(¢) = 1,
i=0,...,p(¢) — 1 and hence p(®) < n. Since at least n — 1 arithmetic
operations are needed to combine n cvaluanons of f and its derivatives,
a(?u) =n- 1L : .

Hence, from (4.2), .

e(’)’s, f) =

e(qS, f) < m = h(n). | (5.4)
It may be verified that o
log3 ‘ '
h(n) < h(3) = , foralln,f . ,
() 3) 3, +2 ‘o_.r,aA n,forc, > 4 | (5.5

Since it is important to solve “difficult’ problems efficiently, the condition

¢y > 4 is not restrictive. Since .
log2 1

2 +1 2 +1

h(2) =



