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Preface

The objectives of the book were to develop a methodology for fatigue reliability and
lifetime prediction of metallic aircraft components (such as wing and engine disk) within the
framework of condition based maintenance. Toward this aim, a simple scheme for stress and
crack analysis based on the finite element method of lines (FEMOL) was developed and
combined with fatigue reliability modeling using the first order reliability method (FORM).
As proof of concept, the combined techniques were applied to a test case consisting of fatigue
reliability assessment of a crack emanating from a weep hole in a C141 airplane wing. A novel
method of fitting a closed form mathematical expression for POD to experimental C-scan
inspection data from C141 weep holes was used in the analysis.

Weep holes in C141 aircraft have been found to be locationed for the initiation of fatigue
crack growth. The implementation of a neural network assisted, automated ultrasonic
inspection technique from the outside of the wing was described. Toward achieving this goal
of field implementation of an automated inspection technique, this work demonstrates the
value of numerical simulation, laboratory studies and algorithm training with samples
representing in-field variation, in-field demonstration, parametric sensitivity studies and
probability of detection (POD) validation. This book discusses principal aspects of condition
monitoring for structural reliability. For specificity the book {ocuses on the development of
cracks. The techniques and instrumentation for flaw detection are discussed, and the topics
include measurement models, laser based ultrasonics, neural networks and integrated
microsensors. Then, the use of condition monitoring in the assessment of residual structural
reliability were discussed. The topics in this book include probabilistic fatigue methods and
fatigue reliability. The beneficial effect of inspections with a prescribed probability of
detection on the probability of failure is demonstrated for the example of cyclic loading of a
component containing an edge crack. The inspection capability for the automated procedure
was found to exceed both the defined inspection requirements and the ability of inspection
through viewing C-scan images.

The another objective of the book was to analyze disk structural integrity using large
deformation theories. Disk structural integrity is controlied by both bulk (tensile and smooth
section fatigue/crack growth) and focal (notch LCF and creep) structural limits. Components
must be capable of sustaining over-speed conditions, ;Jsual]y induced by a failure in another
section of the engine without breaking. Disk fracture or burst criteria are typically set by rig
tests which are time consuming and expensive. The highest temperature experienced by a disk
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is in the blade attachment location where complex stress-fields and geometries must be
simulated. Thus, the formulation of constitutive laws and their application in numerical
simulation of plastic instability and ductile fracture in rotating disk overload failure were
presented in the book. The behaviour of an elastic-plastic rotating disk is analyzed both in the
context of three dimensional theory and within the framework of the plane stress approxi-
mation. For an axisymmetric disk the possibility of bifurcation into a non- axisymmetric mode
is investigated. Computations are also made for the behaviour of a disk with initial
imperfections either in the form of a thickness variation of in the form of material inhomo-
geneities. Calculated Analysis for Rotating Disk were finished using Abaqus and Ansys
Software. Finally, the Role of Discontinuous Yield of Material was studied in detail. For a
ductile, bored disk of uniform thickness it is found that explode occurs after the critical
bifurca-velocity in the axisymmeric solution.

The methods and results presented in the book would eliminate the fuel tank entry
requirement, drastically reduce weep hole and disk crack inspection costs, and reduce
detection variability between technicians in making classification calls. The methods show
promise for development as a standalone personal computer based system for life cycle
management based on quantitative non-destructive evaluation, structural integrity and
reliability assessment.

The book has been written to serve not only as a tool book for collage and university
graduate students, but also as a reference book for practicing engineers and researchers as well.
The book will promote the Structural Integrity Assessment and Large Deformation Analysis of
Metallic Components, and it will be of great interest to civil and mechanics engineers.

In closing, the author wishes to express his sincere thanks and appreciation to the many
individuals (his students, teachers, and practicing engineers) who have both directly and
indirectly contributed to the content of the book. One person most deserving of special
recognition is Prof. Brian Moran, who is dean of department of Civil Engineering, Robert R.
McCormick School of Engineering and Applied Science, Northwestern University, USA. It
is under his supervisions and helps from February, 2000 to August, 2003 in Northwestern
University that the author finished above research contents and projects.

Finally, the book is sponsored by Nanjing hydraulic Research Institute publish
foundations. '

Shaowei Hu
August 18, 2005



List of symbols

Symbol Definition
A constant in material strain-hardening relation
a,b elastic-plastic boundary; current inner and outer radii of disk
ag, by initial inner and outer radii of disk
D variable coefficient relating stress and strain
E variable modulus of elasticity; modulus of elasticity
E, , eg, e, engineering strains in radial, circumferential and axial directions
n constant in strain-hardening relation
r,0,z radial, tangential and axial directions, respectively
ro initial radius to a point (reference state)
r elastic-plastic boundary radius to a point

~

current thickness of disk of radius

ty initial uniform thickness of disk
u radial displacement
Y yield strength stress of material
a radius ratio in undeformed state , = by/ ay
P mass density
& ro/ ao in undeformed state
@ angular velocity
G, yield strength stress of material
v poisson’s ratio
g,, 0y, O, radial, tangential and axial stresses, respectively
T, 79, T nominal stress in radial, circumferential and axial direction
&,€0, & radial, tangential and axial strains, respectively
n a/ b radius of elastic-plastic interface/total radius
0 po’b? speed factor
]
y7, u / b displacement ratio

(other symbols in book have been given clear indications in relative chapters)
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Chapter 1 Finite Element Method of Lines (FEMOL)

1.1 Introduction

Many aircrafts in both civilian and military fleets are becoming old. It is expected that
many of the systems that were built twenty or thirty years ago will not be replaced in the near
future by next generation structures and equipment. Consequently, these aging systems will
have to be kept in service for the next decade or more. This is feasible provided adequate
measures are taken to prevent poor performance, inadequate safety and increasingly expensive
maintenance. This need for extended life expectancy does raise substantial technical
challenges, however. In the following, our response to these challenges is summarized and the
key outcomes of the research are delineated.

In the area of fatigue reliability, the key challenge is the assessment of the effect of
(possibly undetected) flaws and defects on the structural integrity of a safety critical
component. To meet this challenge, new computational tools are required in the areas of risk
assessment and in simulation of fatigue crack propagation. Fatigue reliability (or risk
assessment) methods provide an estimate (or probability) of failure over the course of the
expected lifetime of the component. The effects of NDE inspections can be taken into account.
Fatigue crack propagation is inherently a random process and probabilistic fracture mechanics
methods are usually required. Typically, randomness in fatigue crack propagation parameters
and in the detection of cracks is accounted for. The estimate of failure probability is obtained
by carrying out fatigue crack propagation simulations for different values of the random
variables.

We present a new method for stress and crack analysis based on the finite element
method of lines (FEMOL). The method retains many of the advantages of the finite element
method while also benefiting from powerful differential equation solvers. Key features of the
method the ease of mesh generation and the additional accuracy associated with the
semi-analytic nature of the method. The FEMOL was developed for two and
three-dimensional fracture mechanics and combined with fatigue reliability modeling using
the first order reliability method (FORM). A stress analysis of a simplified C141 weep hole
configuration was carried out to obtain an expression for stress intensity factors. A novel
method of fitting a closed form mathematical expression for POD to experimental C-scan data
from C141 weep holes was used in the analysis. The FEMOL and FORM methods are then
combined to compute fatigue reliability for the weep hole configuration. The method shows
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promise for development as a standalone personal computer based system for structural
integrity and reliability assessment.

The principal accomplishments of the program are summarized below:

(1) Developed FEMOL for two- and three-dimensional fracture mechanics including a
singularity subtraction technique for modeling crack-tip fields.

(2) Developed a procedure for fitting a mathematical expression for POD to experimental
data (from C141 weep holes).

(3) Combined FEMOL and FORM for assessment of fatigue reliability in C141 weep
hole configuration.

First, the finite element method of lines is introduced. In the method, the governing
partial differential equations, defined on arbitrary domains, are semi-discretized, by finite
element techniques via variational principles (or Galerkin weak forms) into a system of
ordinary differential equations (ODEs) defined on discrete mesh lines (straight or curved),
and then the resulting ODE system, at the present stage of the method, is solved directly by
using a standard state-of-the-art ODE solver (COLSYS Software) [2]. A key feature of the
method is that the approximation is continuous in one direction and discretized in a finite
element fashion in the remaining direction(s). It is the continuity of the approximation in
one (local) coordinate direction which gives rise to the system of ordinary differential
equations. These ODEs can be solved using powerful and freely available solvers (we use
COLSYS). Due to efficient in-built adaptively techniques, these solvers essentially
preserve the analytical character of the method in the continuous coordinate direction. In
the following, the FEMOL is described for a model two-dimensional problem. A brief
description of the implementation in three-dimensions is also given. The implementation of
FEMOL for linear elastic crack problems, including the singularity subtraction technique, is
discussed in next chapter.

1.2 Model Boundary Value Problem

~ To illustrate the finite element method of lines (FEMOL) and to make connection with
standard finite element methods, we consider a model two-dimensional boundary value
problem involving a poisson equation (which governs, anti-plane or Mode WM crack problems,
for example). The boundary value problem is specified as:

~#Vu=f(x,y) in Q
u=u(x,y) on I, (1-1)

ou
—5; =q,(x,y) on I,

where u is the displacement field, (2 is the domain and 7", and I, are the Dirichlet

(essential) and Neumann (natural) boundaries, respectively.
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1.3 Domain Partition

In the FEMOL, the domain (2 is first partitioned into a set of elements. For illustrative
purposes, we use quadrilateral type elements here (polynomial degree p=2). The element
shapes depend on the element mapping functions. In general, all four edges of an element may
be curved, which makes for convenient and flexible modeling of arbitrary domains. As an
example, Fig. 1-1 shows a possible FEMOL mesh for an irregular 2D domain, in which <1>,
<2>, --- denote element numbers; L, L,, :-- denote global mesh line numbers and 1,2,3, -

denote global end-node numbers.

Fig.1-1 A pessible FEMOL mesh

1.4 Element Mapping

Fig. 1-2 shows a typical quadratic element mapping in FEMOL from the local (or parent
element) space (&, 77) to the global (or physical) space (x, y). Element mappings of degree p

(p=1,3 for linear and cubic element respectively) are treated similarly.

12

22

32

Global space

Local space

Fig.1-2 A quadratic element mapping
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The curves defined by
E=&=-1+20-1)/p (1-2)
are called the element nodal lines and the i™ nodal line is denoted by L;. The two boundary
curves defined by
n=n;=-1+2(j-1) j=12 (1-3)
are called the element end-sides and the /" end-side is denoted by S;. The intersection of L; and
S; defined by
&n)=LnNS§; (1-4)
is called node ij of an element and is denoted by 7;.
The element mapping is constructed in two steps: the nodal line mapping and the
interpolation to the nodal lines:
Step 1: Nodal line mapping
The first step is to map the curved nodal lines in (x, y)
el space to a standard straight line segment in the parameter 7
from —1 to 1, so that a typical nodal line L; is expressed

n parametrically as

y <~
x=x;(1) y=yi(m) -1<n1<l] (1-5)

n=-1 If the shape of a nodal line is relatively simple, a low

degree polynomial may give a reasonable approximation. A
Fig.1-3 Line element mapping more general approach, used here, is to divide the curved
nodal line L; into p segments with end-points (xy, yi)( k=1,

2, -+, p+1). Lagrange interpolating polynomials of degree p are then used to approximate the
curved nodal line as
p+l p+l
xi(m)= Y Ne(Dxiae,  i(m)= 2 Ne(m)yie (1-6)
k=1 k=1

Particular examples are:

1
p=I 3Nl('l)=5(1—77),N2(’7)=%(1+77)
p=2: Nl(n)%(nz - N =117, N3(0)=%('72 +77) 1-7)

p=3: N =Tlg(1 =mOn* =1), N(n) =%(772 =-bH@3n-D
9 1
N3(n) = —E(ﬂ2 ~D@7+D, Na(n) =10+ m9n* ~1)

Step 2: Interpolation to nodal lines
With the nodal line mapping accomplished, the element mapping can be readily
completed by using Lagrange interpolation in the £ direction in local space, i.e.,

4 -



pi+l P+

x= 3 Nu(&x(m), y= 2 Ni(&)yi(m) (1-8)

i=1 i=1
Jacobians
From the element mapping relation (2-8), we have
0 3]

EE i ox
2 (VRS (1-9)

an oy

Where the Jacobian matrix [J ] of the coordinate transformation takes the form

v1=|¢ "1 (1-10)
[ Xn  Vn

and the determinant of [J ] given as
J =Xeyy —XpVe (1-11)
In the above, subscripts denote partial differentiation with respect to the indicated local
coordinate. For a standard element mapping, J is required to be positive.

1.5 Trial Functions

A key step in the FEMOL is to approximate the trial function # on an element by shape
functions in the & direction, and to leave it continuous in the 7 -direction. A common and
convenient choice for the shape functions is the lagrange interpolating polynomials of degree
p defined. It is useful to write the interpolation in matrix form:

u=[N]{d}° (1-12)
where
[N1=[M(&) N2 . Npu@), dy={di(m) do() . dpu())}
We call [N] the shape function matrix and {d}° the element nodal line displacement

vector.
1.6 Global Energy Functional and Variational Equations

The energy functional corresponding to the model problem is given by

H(u)=-;- Ij)j[(‘;"—x)z +(%)2]dA— ijuf, dA- er ug, ds (1-13)

Continuity across common nodal lines is achieved in the element assembly procedure in a
similar fashion to that in FEM. The treatment of the continuity across common element
end-sides and of the essential boundary conditions will be postponed until after the system of
ordinary differential equations are developed. This allows for a standard element assembly
procedure which leads to the following semi-discrete global energy functional (using (1-12) in

(1-13)).



[T =3 [ (@Y LAy + 20814} + @ [Cl ) d
(1-14)

1 2
- |ty Fan =3 dm)Y v}
=
where a prime denotes differentiation with respect to the 1 coordinate.

The global vectors and matrices are formed by assembling the corresponding local ones.
By assembling the element functional variations and then setting the first variation of the
global functional to zero, i.e., 5[] {d} = 0, We arrive at the global variational or virtual work

equation:

STy =~ (6" (LA™} +[GY(d'} +[H){d} + {F})dn +

Z’]j{Sd(”j)}T({Qj}_nj{p}}e)=0 (1-]5)
It follows from the arbitrariness of {dd} on (-1, 1) that
[A{d"}+[GHdt+[HHd} +{F} ={0}  (-1<n<]) (1-16)
where ’
(4]= .’..‘1 a(§,MINNN]dS a(,m = pl(x)* + ()1 J
[B1= [ b&mINT[N1dE BE) = ~p(xsxy + yeyy)!
[C1= [ c&mINTINIdE &) = {0 ) + (1T
[G]=[41+[B]-[B]' [H]1=[B']-[C]
(F} = {F} + {FL} (F}= [ INF ¢
{FL}={]L,%4,O,'“,0, ILW‘ILM} 1-17)

Note that the load array {F} consists of two terms, an area loading term {F} (body force)
and a line loading term {F;} (flux or traction).

The system of Equ. (1-16) is a set of second-order ordinary differential equations. This
system of equations is solved using COLSYS (a freely available ODE solver) in conjunction
with appropriate boundary conditions at the end points of nodal lines on the essential
(Dirichlet) and natural (Neumann) boundaries. The variable coefficient matrix [4] is
symmetric, positive-definite, and generally of relatively small size. For a given value of 7, it
may be inverted numerically using efficient inversion routines.

REMARK: Because the system of ODE:s is defined in terms of the local coordinate 7 and
the ODE solver COLSYS only accepts separated boundary conditions, we always map
common element end-sides to the same # -coordinate to avoid non-separated boundary
conditions in the formulation.



1.7 Implementation of ODE Solver

Recall that the FEMOL gives rise to the system of ODEs (1-16), re-written here for
convenience
[ARd"} +[GUd'} +[H{d} +[F1={0}  (-1<np<]) (1-18)
To illustrate the development of the coefficient matrices in the ODE system, we use linear
interpolation to the nodal lines ( p = 1) and therefore

1 1
Nx(n)=-2—(1~f7) Nz(ﬂ)=—2‘(1+77) (1-19)
The coordinates of the nodal lines are given by
—(@-1 ;
xm=-""U"Dy (=12, 2n) yim =bn
n—i .
xi+l(’7)=__n£a (1=1a29"'o2n) yi+|(’,)=bn (1'20)

where a, b are the intervals in the x and y directions respectively. Interpolation to the nodal

lines is written as

2 2
x=Y Ni(&)i () y=2 Ni&W:(m) (1-21)

i=l i=]

In element i (i=1,2,-++,2n), therefore

x= %(1 =6 )+ (1 + 5 () = Son-2i+1-¢]
n

1 i
y =5(1—§)y1(77)+5(1+§)y2('7)=b’7 (1-22)
The determinant of the Jacobian matrix is
a
,J' =XeYn —Xpye = Eb (1-23)

On an element, the displacement is
u=[N}{d} (1-24)

where [N1=[Ni(&) No(E)], {d}=1{d,(n) d>(m)}".

Using the definitions (2-17), the coefficient matrices of Equ. (1-18) can be expressed for each
nodal line as

¢ T(Njdg = £t A= 1-n?
[4]= La(é,n)[N] (N)dg= 2nb[ 1-7° UW)ZJ

L : _pa|=2l-m) 27
[G1=[41+[B]-[B], [G]“znb[ -27 2(1+77)]



b1 -1
(H1=[81-[C1=AC1=~ [ e mINTIN'IdE = _2"_[ }
- al-1 1
(F=tFy+ Ry, Fg= [ INTPaE, )=t Jua) (29

Assembling the coefficient matrices above for all nodal lines ( i=1,2,:-*,2n ), we get the
overall system of ODEs for the problem:

(1-n)? 1-7° 0 0 0 0 0 0
t-7> (Q+m)i+0-7) 1-n* 0 0 0 0 0
0- 1-7t (l+7) +(1-7) [ 0 0 0
a I-n’ 1+7) +(-g) 0
=25 o A A 0
(:) 0 0 0 66(|+n)2;(|—q)’ l—'rf
0 0 0 0 0o 0 1-7° 1+
n-1 - 0 0 O 0 0]
-n 2n -n. 0 O 0 0
0 -n 2np -n O 0 0
pa | 0 -n 2n -n 0 o
G]==—x . . . . .
[C] nb : : : :
0 0O 0 0 O 0 0
0 0O 0 0 0 2n -n
| O O 0 o0 O -n l+n
(1 -1 0 0 O 0 0 ]
-1 2 -1 0 0O 0 0
o -1 2 -1 0
nbl 0 0 -1 2 0
Hl="2u—
H1==20"700 6 0 - 0
6o 0 0 0 O0 .. 2 -1
0 0 0 0 0 .. -1 (l+r])2_
F={FR F, F, F, .. F,, E, F,} (1-26)

The system of ODEs is then solved using modem ODE solvers (such as COLSYS) called
from the FEMOL code. :
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