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1.1_Differential Equations and Mathematical Models

CHAPTER
First-Order

Differential Equations

Example 1

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f'(r) of the function f is the rate at which
the quantity x = f(r) is changing with respect to the independent variable 7, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

The differential equation

2, .2

_ = t

7 x° 4+
involves both the unknown function x(z) and its first derivative x'(t) = dx/dt. The
differential equation

d’y | .dy

— +3—=+4+7y=0
a2 gt

involves the unknown function y of the independent variable x and the first two
derivatives y’ and y” of y. |

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.
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Example 2

Example 3

Temperature A

Il Temperature 7'

FIGURE 1.1.1. Newton’s law
of cooling, Eq. (3), describes the
cooling of a hot rock in water.

Example 4

In algebra, we typically seek the unknown numbers that satisfy an eguation
such as x> +7x% — 11x +41 = 0. By contrast, in solving a differential equation, we
are challenged to find the unknown functions y = y(x) for which an identity such
as y'(x) = 2xy(x)—that is, the differential equation

Ay B )
dx o
—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

If C is a constant and ]
y(x) = Ce™, )]

then d
ot S (& (2xe"2> = (2x) (Ce’z) = 2xy.
dx
Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution
of—the differential equation
— =2 2
gl 4 2
for all x. In particular, Eq. (1) defines an infinite family of different solutions of
this differential equation, one for each choice of the arbitrary constant C. By the
method of separation of variables (Section 1.4) it can be shown that every solution
of the differential equation in (2) is of the form in Eq. (1). w

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time 7, but we will see numerous examples in which some quantity other
than time is the independent variable.

Newton’s law of cooling may be stated in this way: The time rate of change (the
rate of change with respect to time ¢) of the temperature 7 (¢) of a body is propor-
tional to the difference between 7" and the temperature A of the surrounding medium
(Fig. 1.1.1). That is,
LA —k(T — A) 3)
dr ’
where k is a positive constant. Observe that if T > A, then dT/dt < 0, so the
temperature is a decreasing function of 7 and the body is cooling. Butif 7 < A,
then dT/dt > 0, so that T is increasing.
Thus the physical law is translated into a differential equation. If we are given
the values of k and A, we should be able to find an explicit formula for 7'(¢), and

then—with the aid of this formula—we can predict the future temperature of the
body. ]

Torricelli’s law implies that the time rate of change of thé volume V of water 7in a
draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water
in the tank: P

a2 = kv, @)



Example 5

FIGURE 1.1.2. Torricelli’s law
of draining, Eq. (4), describes
the draining of a water tank.

Example 6

1.1 Differential Equations and Mathematical Models 3

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional
area A, then V = Ay, sodV/dt = A - (dy/dt). In this case Eq. (4) takes the form

dy__ 5
2 -, )

where h = k/A is a constant. wi
The time rate of change of a population P (r) with constant birth and death rates is,
in many simple cases, proportional to the size of the population. That s,

dpP
= = kP, (6)
where k is the constant of proportionality. |
Let us discuss Example 5 further. Note first that each function of the form
P(t) = Ce* @)
is a solution of the differential equation
dP
e kP

in (6). We verify this assertion as follows:
P'(1) = Cke" =k (Ce*) = kP(r)

for all real numbers r. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P(f) = Cek 5
one for each choice of the “arbitrary” constant C. This is typical of differential
equations. It is also fortunate, because it may allow us to use additional information
to select from among all these solutions a particular one that fits the situation under
study.

Suppose that P(t) = Ce*’ is the populaticrn;xr 6f é— coli(r)nr)rlr of bécteriaratit'init’z t ihaf
the population at time ¢ = 0 (hours, h) was 1000, and that the population doubled
after 1 h. This additional information about P(?) yields the following equations:

1000 = P(0) = Ce° = C,

2000 = P(1) = Cé*.
It follows that C = 1000 and that ek = 2,50 k = In2 ~ 0.693147. With this value
of k the differential equation in (6) is

dP
oy (In2)P =~ (0.693147) P.
Substitution of k = In2 and C = 1000 in Eq. (7) yields the particular solution
P(1) = 1000e™?" = 1000(e™2)" = 10002  (because &2 = 2)

that satisfies the given conditions. We can use this particular solution to predict
future populations of the bacteria colony. For instance, the predicted number of
bacteria in the population after one and a half hours (when ¢ = 1.5) is

P(1.5) = 1000 - 2%/2 ~ 2828, [ ]
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C=12 C=6 C=3
8 T T T 7
c=1/
6_ 4
41 i
i c=1"
i 2
a 0 ——— —
e c=-
—4p N B >.%
=6 G N LN C=-1\_ |
_8 1 1 1
24 7D 2\ 4 6
C=-12 C=-6 C=-3

FIGURE 1.1.3. Graphs of
P(t) = Ce* withk = In2.

The condition P(0) = 1000 in Example 6 is called an initial condition be
cause we frequently write differential equations for which ¢ = 0 is the “st'z\mpg
time.” Figure 1.1.3 shows several different graphs of the form P(7) = cek with
k = In2. The graphs of all the infinitely many solutions of d P /dt = kP in fz}ct fill
the entire two-dimensional plane, and no two intersect. Moreover, the selection of
any one point Py on the P-axis amounts to a determination of P(0). Becau§e.e.x-
actly one solution passes through each such point, we see in this case that an initial
condition P(0) = P, determines a unique solution agreeing with the given data.

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original
real-world situation; for example, answering the question originally posed.

Mathematical

model results

Mathematical\ __ |
analysis

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (d P/dt = kP, P(0) = Pp) that are known or are assumed
to hold. The mathematical analysis consists of solving these equations (here, for P
as a function of ). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

Nevertheless, it is quite possible that no one solution of the differential equa-
tion fits all the known information. In such a case we must suspect that the differen-
tial equation may not adequately describe the real world. For instance, the solutions
of Eq. (6) are of the form P(t) = Ce*', where C is a positive constant, but for no
choice of the constants k and C does P(t) accurately describe the actual growth of
the human population of the world over the past few centuries. We must therefore
write a perhaps more complicated differential equation, one that takes into account
the effects of population pressure on the birth rate, the declining food supply, and
other factors. This should not be regarded as a failure of the model in Example 5, but
as an insight into what additional factors must be considered in studying the growth
of populations. Indeed, Eq. (6) is quite accurate under certain circumstances—for

example, the growth of a bacterial population under conditions of unlimited food
and space.
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But in our population example we ignored the effects of such factors as vary-
ing birth and death rates. This made the mathematical analysis quite simple, perhaps
unrealistically so. A satisfactory mathematical model is subject to two contradictory
requirements: It must be sufficiently detailed to represent the real-world situation
with relative accuracy, yet it must be sufficiently simple to make the mathematical
analysis practical. If the model is so detailed that it fully represents the physical
situation, then the mathematical analysis may be too difficult to carry out. If the
model is too simple, the results may be so inaccurate as to be useless. Thus there is
an inevitable tradeoff between what is physically realistic and what is mathemati-
cally possible. The construction of a model that adequately bridges this gap between
realism and feasibility is therefore the most crucial and delicate step in the process.
Ways must be found to simplify the model mathematically without sacrificing es-
sential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

I Cis 4 consiant and ) = 1/C — ). hen

dy_ 1 )
dx-(C——x)z—y

if x # C. Thus
x) = ! 8
YO =3 ®
defines a solution of the differential equation
dy 2
dx = &)

on any interval of real numbers not containing the point x = C. Actually, Eq. (8)
defines a one-parameter family of solutions of dy/dx = y?, one for each value of
the arbitrary constant or “parameter” C. With C = 1 we get the particular solution

1
y(x) = 1T—=
that satisfies the initial condition y(0) = 1. As indicated in Fig. 1.1.5, this solution
is continuous on the interval (—o0, 1) but has a vertical asymptote at x = 1. [ ]
W Verify that the function y(x) = 2x'/2 — x!/2 n x satisfies the differential equation
4x*y’ +y=0 (10)
forall x > 0.
Solution  First we compute the derivatives
Y@ =—-1x"Inx and y'(x)= ¥y - 3x 732,

Then substitution into Eq. (10) yields
4x%y" 4y = 4x? (3x721Inx - Fx7TY) pox 2y 2y 0

if x is positive, so the differential equation is satisfied for all x > 0, ]



