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General Preface

This three-volume series grew out of a three-quarter course in probability,
statistics, and stochastic processes taught for a number of years at UCLA. We felt
a need for a series of books that would treat these subjects in a way that is well
coordinated, but which would also give adequate emphasis to each subject as befng
interesting and useful on its own merits.

. The first volume, Introduction to Probability Theory, presents the fundamental
ideas of probability theory and also prepares the student both for courses in
statistics and for further study in probability theory, including stochastic processes.

The second volume, Introduction to Statistical Theory, develops the basic
theory of mathematical statistics in a systematic, unified manner. Together, the
first two volumes contain the material that is often covered in a two-semester course
in mathematical statistics. v

The third volume, Introduction to Stochastic Processes, treats Markov chams,
Poisson processes, birth and death plocesses, Gaussian processes, Brownian-
motion, and processes defined in terms of Brownian motion by means of ele-
mentary stochastic differential equations.



Preface | '

This book is designed for a one-semester course in mathematical statistics. It was
written in close conjunction with Introduction to Probability Theory, the first volume
of our three-volume series, and assumes that the student is acquainted with the
material covered in a one-semester course in probability for which elementary
calculus is a prerequisite.

The objective of this book is to present an elementary systematic treatment of
mathematical statistics from a theoretical point of view. An attempt has been made
to restrict consideration to important fundamental ideas and to describe these in
some detail, so that the student will appreciate the motivation as well as the mathe-
matics of the theory. Too often students who have finished a course in statistics
come away with only a vague notion of the central ideas and methods of the
subject. It is hoped that this text will uncover the unity and logical structure of
statistical methods.

The theoretical development has been based on a few of the elementary notions
of decision theory. This permits the treatment of Baye'§ién methods in addition to
the more traditional methods; however, space did not permit the introduction of
more than the most basic of these methods. The Bayesian techniques occur at the
end of each chapter; therefore they can be omitted if time does not permit their
inclusion.

One of the most important theorems and most useful techniques in statistics is
concerned with testing the general linear hypothesis. This theorem is the foundation
of numerous special tests and it can be applied to a host-of important problems. A
proof of the theorem is seldom presented at this elementary level; however,
because of the importance of the theorem and because elementary calculus students
are now receiving some training in matrix algebra, a proof based on simple alge-
brafc and geometric techniques is presented. This material, which occurs in Chapter
5, is undoubtedly the most difficult part of the book, but its mastery is well worth
the effort. For students who do not possess the necessary algebraic background, it
is best to skip the proofs in this chapter and pass on to the applications.

Although elementary calculus suffices as a prerequisite for Introduction to
Probability Theory, the present volume also assumes some elementary knowledge

vii



viii Preface

of matrix algebra. This knowledge will be needed in Chapter 4 as well as in Chapter
5, because the least squares theory in that chapter is presented by means of matrix
notation and techniques. However it is only in Chapter 5 that a student needs to
know anything more than the simplest noticns of matrix algebra. A review of the
matrix methods that are needed for these two chapters is presented in an appendix.

Some instructors may be surprised to discover that the concept of sufficiency is
not introduced in this book. Sufficiency is very useful in developing statistical
theory at an advanced level, but it would serve no useful purpose at this introduc-
tory stage. There are several other topics that are often found in introductory texts
which are not included here. The justification for such omissions is that classroom
time spent on such topics would leave insufficient time for an adequate discussion
of the basic material.

The exercises at the end of each chapter are arranged according to the order in
which the material of that chapter was presented. Problems of a computational
nature occur first. Answers are given in an appendix.

Although this book was designed for-a one-semester course meeting three times

~a week, it is sufficiently flexible in arrangement of material to adjust itself to a
shorter course. This is easily accomplished either by omitting the chapter on non-
parametric methods, or by omitting the material on Bayesian methods, or by
omitting some of the proofs, or by a combination of‘such omissions. Sections that
may be omitted are indicated by an asterisk. A somewhat longer course can be
accommodated by including all the theory and spending more time on the exercises.

We would like to thank Frank Samaniego for obtaining answers to many of the
exercises and Mrs. Gerry Formanack for her cxcellent typing.
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,I Basic Principles

Many phenomena in the various Sciences are governed by laws or relations of a
stochastic nature. This implies that a probability model may be appropriate for.
representing the occurrence of the phenomenon. Such models were introduced and
applied to games of chance and other physical experiments in Volume I, Introduction
to Probability Theory. Although the physical sciences yield experiments that are
likely to be more stable than those in the nonphysical sciences, and hence for
which a probability model might seem to be more appropriate, such models can
be just as appropriate in these other fields. The fundamental difference is that
there may be more uncontrolled variables interfering with the variable being
studied and leading to greater variability of it. The application of probability
models to phenomena in these various sciences led to the development of methods
that are now commoniy called the methods of statistics.

Some simple typical problems that the methods of statistics are designed to solve
are: )

deciding on the basis of testing a few samples from a shipment of a certain
drug whether the quality of the shipment is satisfactory,

predicting on the basis ofa sma]l poll what the voters’ preferences are on a
vital issue,

calculating on the basis of a high school student’s record and the records of
students who have gone to college what the chances are that he will be
successful in college,

deciding on the basis of analyzing sonar signals whether a submarine is
approaching.

Problems of this type can be formulated mathematically by considering the data
that are to be used for making a decision as the observed values of a random
variable X. The distribution of X is assumed to belong to a certain family of
distributions, a particular member of which is specified when the value of a paras
meter 0 is specified. The problem is to decide on the basis of the data which
member, or members, of the family could represent the distribution of X. This is
called rhe problem of statistical inference. For example, in the problem of deter-
mining voter preferences on an issue by means of a poll, the variable X may be
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2 » Basic Principles

treated as a discrete random variable with X assuming the value 1 or O correspond-
ing to an individual’s favoring or not favoring the issue, and with the parameter
representing the unknown proportion of voters favoring the issue. A typical
problem of statistical inference is to decide on the basis of a set of responses
(x4, - . -, X,) Obtained by a pollster whether.the value of 0 exceeds .60.

The methods of statistics are much broader in scope than the statistical inference
problems illustrated here would suggest. They concern themselves also with such
problems as how experiments should be conducted, what models are appropriate,
and how information should be utilized. However, we shall be concerned almost
exclusively with finding the best methods for making inferences about distributions
of random variables. This means that we assume our random variable X possesses
a given type of distribution depending upon an unknown. parameter @ and that our
objective is to draw some inference concerning 6. In most problems 0 will be an
ex licit parameter of a probability density function f(x | #); however, # may be
merely an index to distinguish different members of a family of such functions. The
random variable X and the parameter # may be vector variables with several com-
ponents each; but in our discussion of basic principles they will be treated as one
dimensional to simplify the exposition. The extension to vector variables will be
considered in the next chapter. Typical probability models of this type are the
binomial distribution with @ representing the probability of success in a single trial
of an experiment, the Poisson distribution with 6 representing the mean of the
distribution, and the normal distribution with known variance and with @ repre-
senting the mean of the distribution. If both the mean and variance of a normal
distribution were unknown, 8 would represent the vector parameter (u, o).

In an inference problem such as the one where @ is the proportion of voters
favaring an issue, the parameter 6 is considered to be a fixed but unknown constant
at the time the poll is taken. However, in some problems the parameter § may be
treated as a random variable with a known probability distribution. If so, the
distribution will be assumed to be given by a density function, n(0). The function
f(x | 0) will then represent a conditional distribution with the variable 0 fixed, and
the joint distribution of X and @ will be given by the density f(x, 8) = n(0)f(x | 0).
Here the word density is used for both discrete-and continuous random variables.
This convention was used in Volume I and will ‘be used throughout this book
without further reminders. There is a slight inconsistency in notation here because
a capital letter normally represents a random variable and the corresponding small
letter its numerical value, whereas 8 is being used here to represent both the random
variable and its numerical value. When 0 is treated as a random variable its
probability distribution is called a prior distribution. This name arises because
7(0) is known prior to the experimentation that is carried out to make an inference
concerning €. An illustration of a problem for which @ might be treated as a
random variable is that of deciding by means of testing a sample taken from a
shipment whether the proportion 0 of defectives in the shipment exceeds some
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tolerance proportion 6,. Assume the purchasing firm receives such shipments
regularly and has determined a distribution for 6 from past shipment @’s. The 8 for
this shipment may be treated as the value, although unknown, of a random variable
possessing this distribution. Most of the classical methods of statistical theory
treat ) as a constant and rely only on a set of observed values of the random variable
X for drawing inferences. This is partly because for many of the problems in the
social and life sciences, from which much of statistical theory evolved, no n(0) is
available or appropriate. It would, of course, be a mistake to ignore prior informa-
tion on @ if such inlzormation were available, even if it is not expressible in the form
of a precise probability distribution. . )

To recapitulate, we shall assume that we are given a probability distribution of a
random variable X that depends upon a parameter 0, and that we wish to make
some inference concerning ¢ on the basis of some observed values of the random.
variable X and of a prior distribution for @ (if available).

1.1. Types of problems

Since an inference is to be made by means of a set of observed values
X{s ...y X, Of the random variable X, it is necessary to introduce a function
d = d(xy,...,x,) of those values for making the inference. Such a
function is called a decision function. The nature of this function will
depend upon the kind of inference concerning @ that is to be made. In the
simplest problems we merely wish to know whether a certain proposition
is true or false. For example, we might wish to know whether a shipment
of drugs is up to quality specifications, whether a radar scanning has
picked up a missile, or whether the number of children in a school district
who suffer from malnutrition exeeeds ten percent. We shall take a
positive point of view in decision making by associating any decision with
an action. Thus, in the preceding problems there will be two possible
actions available, which will be denoted by a, and a,, with a, correspond-
ing to the decision of accepting the truth of the proposition and a,
corresponding to its rejection. For a set of n observational or sample
values, we will have an n-dimensional sample space. Since a decision
function d(x,, . . ., x,) must determine for each point of this sample space
whether action a, or a, is to be taken, such a function must separate the
sample space into exactly two parts, one part consisting of those sample
points for which @, will be taken and the other part consisting of points
for which action a, will be taken. For example, if small values of X
correspond to the truth of a proposition, a possible division of an n
dimensional sample space might be to assign all points inside the sphere
x} + ++- + x? = r’, where r is a suitably chosen constant, to @, and all
other points to @,. Problems of the preceding type in which there are only
two possible actions are called hypothesis testing problems.
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A more complicated decision making problem arises when there are
more than two possible actions available. For example, suppose a certain
region in Europe is known to have been inhabited by five different races of
people. An archaeologist might wish to decide on the basis of bone
measurements taken of a group of skeletons found in that region to which
of the five races they belonged. Because of the simplicity of hypothesis
testing procedures, problems involving more than two possible actions are
sometimes incorrectly treated as hypothesis testing problems. For example,
if a new drug is introduced as a cure for a disease, it is important to decide
whether the drug is superior, inferior, or about equally effective in
curing the disease; therefore it would be improper to treat it as a two
action problem, in which one tests, for example, only whether the drug is
superior or is equally effective in curing the disease. Problems in which
there are a finite number, X > 2, possible actions available are called
mudtiple decision problems. A decision function for such problems must
divide the sample space into k parts, the ith part consisting of those sample
points that are associated with taking action a;, i = 1,..., k.

A third class of problems arises when interest centers on trying to
predict the value of the parameter 0 and there are an infinite number of
possibilities for 6. Thus if 0 represents the proportion of voters who will
vote for candidate 4, it may be important to have a precise estimate of that
proportion, rather than merely to decide whether it exceeds 1/2. The
decision function d(x;, ..., x,) will then be a real-valued function whose
range of values theoretically may be taken to be the interval [0, 1].
Problems, of this type are called estimation problems.

As an illustration of how these three types of problems could arise in
the same experimental situation, suppose that two new drugs for lowering
blood pressure are to be compared for effectiveness. Let X denote the
ratio of a patient’s blood pressure after treatment to his blood pressure
before treatment, and let # represent the mean value of this random variable
with respect to a class of patients. A typical problem of testing a hypothesis
is to decide on the basis of experimentation with both drugs whether
0, < 0, or 8, > 0,, where 8, and 8, correspond to the two drugs. From
a practical point of view there is little point in preferring one drug to the
other unless it shows a meaningful advantage. Thus, it might be more
realistic to treat the problem as a multiple decision problem by con-
sidering the three possibilities 6, — 0, < =8, —8 < 0, — 6, < &,
0, — 0, = 6, where J is the smallest difference that is considered

practically useful. If the experiment yielded the decision, for whichever
" formulation was chosen, that the first drug is superior, then additional
experimentation with this drug would be desirable so that an accurate
estimate of 6, could be obtained.
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1.2. The risk function

The success of a given decision function in accomplishing its objective
needs to be measured in a numerical manner. If an experimenter is able
to assign weights to the seriousness of making various incorrect decisions,
these weights can serve to define a loss function #(0, a). This function is
designed to numerically measure the penalty that arises from taking action
a when @ is the true value of the parameter. For example, if we were given
the observational values x, ..., x, of a normal variable with unknown
mean 6, and we wished to use them to estimate 6, the action a would
consist in stating that the value of 8 is d(x,, ..., x,). The mégnitude of
the error in this decision would be given by |0 — d(xq,...,%). A
typical loss function might then be #(0,a) = |# — a|. To indicate the
dependence of the loss function upon the decision function and the
observational values, we will express it in the form #(0, d(x,, . .., x,)).
The name loss is attached to this function to indicate that the objective is
to minimize .#. Since we wish to minimize our decision errors, it is clear
that we would like .% to be a function that decreases as the magnitude of
the error decreases. The problem of how to choose ¥ for the three
types of problems discussed before will be considered in Section 1.4.

Problems arise in which the available decisions are qualitative in nature
and for which it would be difficult to assign a numerical value to incorrect
decisions. Thus, an individual might be faced with a choice of five color
schemes for redecorating his house. If aesthetic considerations are as
important as monetary ones in such a choice, it would be inconvenient to
assign a loss function here. Problems of this type can be treated satisfacto-
rily if one is able to assign a preference ordering to the possible choices
by employing a numerical valued function, the utility function, that is
based on this ordering. Even for problems of a quantitative nature, it is
often necessary to introduce a utility function to express in quantitative
form one’s preferences among the various possibilities. We shall assume
hereafter that if the problem is one in which it is necessary or desirable to
introduce a utility function, then % represents that function.

Thus far the discussion has been on the basis of having available a set of
observed values x,, . .., x, of some random variable X and then trying to

. -select a good function of those values. In measuring the efiectiveness of
any decision function, we must look at its overall performance and not
just at how well it does for a single experiment. We therefore consider
an experiment in which a set of # observations is to be taken of some
random variable X. These potential observational values will be denoted
by X,, ..., X, Ifthe observations are to be obtained by random sampling,
then we know from the definition of random sampling in Volume I that
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these #» random variables will be independently and identically distributed
with the same distribution as that of X. A decision function
d=d(X;,...,X,) is then a random variable, and therefore the loss
L = £0,d(X,,...,X,) is also a random "variable. To measure the
overall effectiveness of a decision function we-calculate the expected value
of the loss function and use it as our measure. This defines a new function
called the risk function £. Thus,

Definition 1 The risk funciion R is given by the formula
RO,d) = E,20,d(X,,..., X)),

where the expectation is taken with respect to the distribution of the
random variables Xy, . . ., X, with 0 fixed.

Under random sampling and for the situation in which X possesses the
density f(x | 0), the joint distribution of these n random variables is given
by [Ti=1 f(x; | 0). If X is a continuous random variable the risk function
will then be given by

O RO, d) = f-~-f$(e, Ao 5) TT S0 10 dx, -+ d,

For a discrete random variable these integrals must be replaced by
corresponding sums over all possible values of the x’s. Since it is incon-
venient to write out multiple integrals, an abbreviated notation will be
used in which X will represent the basic random variable if a sample of
size one is to be taken but will represent the vector random variable
X = (X,,..., X;) if a sample of size n > 1 is to be taken. Fhen we may
replace the multiple integration notation of (1) by the more compact
representation

@ A0, d) = f 26, d(x)f(x | 0) dx

where now f(x | 8) denotes the density of the vector variable’ X and dx
represents dx, - * - dx,,. ‘

Now suppose we wish to compare two decision functions d; and d, by
means of their risk functions %(0, d,) and #(0, d,). This comparison is
most easily made by means of their graphs. Consider the two sets of
graphs shown in Figures 1 and 2 which represent two possible occurrences.
It is clear in Figure 1 that decision function d, is better than 4, because
_ its risk function value is less than that of d, for each value of 0 and our
objective is to minimize the risk function. In Figure 2, however, neither
function is superior to the other because for some values of @ the function
d, is better than d, but for other values the advantage is reversed.
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Figure 7

Unfortunately, the type of situation illustrated in Figure 1 rarely occurs,
at least when the comparison is being made between decision functions
that have been selected with intelligence. It would be difficult to make a
choice between d; and d, for the more typical situation illustrated in
Figure 2. In such cases, it is necessary to introduce some additional

R (8. dy)

& (8, dy)

- Figure 2

principle or criterion in order to arrive at a choice. One such principle
that is quite popular is based on using the maximum value of the risk
function as a criterion for comparison. If one risk function has a smaller
maximum value than another, the decision function yielding the smaller
maximum value is considered the better. If there is a decision function d
whose risk function possesses a maximum value that is a minimum for all
competing risk functions, d is called a best decision function in the
minimax sense. Thus,

Definition 2 The function dy is called a minimax decision
function in the class D of decision functions if it satisfies

max #(0, d,) = min max 2(9, d).
] dep @

From Figure 2 it will be seen that d, is a better decision function than
d, in the minimax sense, because its risk function clearly has a smaller
maximum than the risk function for d,. If the class D of decision functions
consisted only of these two functions, then &, would be a minimax decision
function relative to this class.

The advantage of introducing an additional principle, such as that of
minimax, is that it reduces the comparison of decision functions to the
comparison of real numbers. There are other principles that could be
introduced here, but they will be discussed later when they are needed.
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As an illustration—of the preceding ideas, consider the problem of
estimating the mean 6 of a Poisson distribution on the basis of a single
observed value X, Here f(x|0) = (e:BG")/x!, x=0,1,.... We shall
choose the decision function d(x) = cx, where ¢ is some positive constant, .
and we shall assume that the loss function is £(0,d) = (d — 0)*/.
According to formula (1) the risk function is given by the sum

a0,d) = § GO0
x=0 0 x!
The evaluation of #(0, d) is simpler, however, if the basic definition of #
as the expected value of % is used and the properties of E that were
derived in Volume I are employed; hence we calculate E(cX — 6)/6.
This expected value is most easily carried out by first writing (cX — 0)%/0
in the following form.

a2 W2 2 2 2
(&_X_O_)=g(X_Q) =f_(x._e+g(1_£))
0 0 c 0 c//

g{(X—-0)2+29(1—%)(X—G)fﬂz(l—%)2}-

Since X is a Poisson variable, we know from Volume I that the mean and
variance of X are both equal to 6, and therefore that E(X — 6) = 0 and
E(X — 0)* = 6. Application of these facts to the preceding sum will
yield the result

3) R0, d) = 952 {9 + 0 (1 n %)2} = & + 0 — D2

Now consider what value of ¢ should be chosen to produce a good
estimate of 0. If ¢ = 1, the risk function has the constant value of 1.
If ¢ # 1, the risk function is a linear function of 8 with a positive deriv-
ative, and therefore it will assume increasingly large valucs as 6 becomes
increasingly large. If there is no restriction on the value of @, except that it
must be positive, then ¢ = 1 produces a minimax estimator in the class of
estimators d(X) = cX. It is the only estimator in that class which yields a
finite maximum for the risk function. The word estimator is used to de-
note a function of the random variables, whereas the word estimate
denotes its numerical value.

1.3. Mean risk

If, in addition to the sample X = (X4, ..., X;), a prior distribution for 6
is available, then X and 6 are both considered to be random variables.



