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Preface

This book is meant to be an introduction to Riemannian geometry. The reader
is assumed to have some knowledge of standard manifold theory, including basic
theory of tensors, forms, and Lie groups. At times we shall also assume familiarity
with algebraic topology and de Rham cohomology. Specifically, we recommend
that the reader is familiar with texts like [14], [63], or [87, vol. 1]|. For the readers
who have only learned a minimum of tensor analysis we have an appendix which
covers Lie derivatives, forms, Stokes’ theorem, Cech cohomology, and de Rham
cohomology. The reader should also have a nodding acquaintance with ordinary
differential equations. For this, a text like [67]is more than sufficient.

Most of the material usually taught in basic Riemannian geometry, as well
as several more advanced topics, is presented in this text. Several theorems from
chapters 7 to 11 appear for the first time in textbook form. This is particularly
surprising as we have included essentially only the material students of Riemannian
geometry must know.

The approach we have taken sometimes deviates from the standard path. Aside
from the usual variational approach (added in the second edition) we have also
developed a more elementary approach that simply uses standard calculus together
with some techniques from differential equations. Qur motivation for this treatment
has been that examples become a natural and integral part of the text rather than a
separate item that is sometimes minimized. Another desirable by-product has been
that one actually gets the feeling that gradients, Hessians, Laplacians, curvatures,
and many other things are actually computable.

We emphasize throughout the text the importance of using the correct type
of coordinates depending on the theoretical situation at hand. First, we develop a
substitute for the second variation formula by using adapted frames or coordinates.
This is the approach mentioned above that can be used as an alternative to varia-
tional calculus. These are coordinates naturally associated to a distance function.
If, for example we use the function that measures the distance to a point, then the
adapted coordinates are nothing but polar coordinates. Next, we have exponential
coordinates, which are of fundamental importance in showing that distance func-
tions are smooth. Then distance coordinates are used first to show that distance-
preserving maps are smooth, and then later to give good coordinate systems in
which the metric is sufficiently controlled so that one can prove, say, Cheeger’s
finiteness theorem. Finally, we have harmonic coordinates. These coordinates have
some magical properties. One, in particular, is that in such coordinates the Ricci
curvature is essentially the Laplacian of the metric.

From a more physical viewpoint, the reader will get the idea that we are also
using the Hamilton-Jacobi equations instead of only relying on the Euler-Lagrange
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equations to develop Riemannian geometry (see [5]for an explanation of these mat-
ters). It is simply a matter of taste which path one wishes to follow, but surprisingly,
the Hamilton-Jacobi approach has never been tried systematically in Riemannian
geometry.

The book can be divided into five imaginary parts

Part I: Tensor geometry, consisting of chapters 1-4.

Part II: Classical geodesic geometry, consisting of chapters 5 and 6.

Part I1I: Geometry a la Bochner and Cartan, consisting of chapters 7 and 8.

Part TV: Comparison geometry, consisting of chapters 9-11.

Appendix: De Rham cohomology.

Chapters 1-8 give a pretty complete picture of some of the most classical results
in Riemannian geometry, while chapters 9-11 explain some of the more recent de-
velopments in Riemannian geometry. The individual chapters contain the following
material:

Chapter 1: Riemannian manifolds, isometries, immersions, and submersions are
defined. Homogeneous spaces and covering maps are also briefly mentioned. We
have a discussion on various types of warped products, leading to an elementary
account of why the Hopf fibration is also a Riemannian submersion.

Chapter 2: Many of the tensor constructions one needs on Riemannian man-
ifolds are developed. First the Riemannian connection is defined, and it is shown
how one can use the connection to define the classical notions of Hessian, Laplacian,
and divergence on Riemannian manifolds. We proceed to define all of the important
curvature concepts and discuss a few simple properties. Aside from these important
tensor concepts, we also develop several important formulas that relate curvature
and the underlying metric. These formulas are to some extent our replacement
for the second variation formula. The chapter ends with a short section where
such tensor operations as contractions, type changes, and inner products are briefly
discussed.

Chapter 3: First, we indicate some general situations where it is possible to
diagonalize the curvature operator and Ricci tensor. The rest of the chapter is
devoted to calculating curvatures in several concrete situations such as: spheres,
product spheres, warped products, and doubly warped products. This is used to
exhibit some interesting examples that are Ricci flat and scalar flat. In particular,
we explain how the Riemannian analogue of the Schwarzschild metric can be con-
structed. Several different models of hyperbolic spaces are mentioned. We have a
section on Lie groups. Here two important examples of left-invariant metrics are
discussed as well the general formulas for the curvatures of bi-invariant metrics.
Finally, we explain how submersions can be used to create new examples. We
have paid detailed attention to the complex projective space. There are also some
general comments on how submersions can be constructed using isometric group
actions.

Chapter 4: Here we concentrate on the special case where the Riemannian man-
ifold is a hypersurface in Euclidean space. In this situation, one gets some special
relations between curvatures. We give examples of simple Riemannian manifolds
that cannot be represented as hypersurface metrics. Finally we give a brief in-
troduction to the global Gauss-Bonnet theorem and its generalization to higher
dimensions.

Chapter 5: This chapter further develops the foundational topics for Riemann-
ian manifolds. These include, the first variation formula, geodesics, Riemannian
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manifolds as metric spaces, exponential maps, geodesic completeness versus metric
completeness, and maximal domains on which the exponential map is an embed-
ding. The chapter ends with the classification of simply connected space forms and
metric characterizations of Riemannian isometries and submersions.

Chapter 6: We cover two more foundational techniques: parallel translation and
the second variation formula. Some of the classical results we prove here are: The
Hadamard-Cartan theorem, Cartan’s center of mass construction in nonpositive
curvature and why it shows that the fundamental group of such spaces are torsion
free, Preissmann’s theorem, Bonnet’s diameter estimate, and Synge’s lemma. We
have supplied two proofs for some of the results dealing with non-positive curvature
in order that people can see the difference between using the variational (or Euler-
Lagrange) method and the Hamilton-Jacobi method. At the end of the chapter
we explain some of the ingredients needed for the classical quarter pinched sphere
theorem as well as Berger’s proof of this theorem. Sphere theorems will also be
revisited in chapter 11.

Chapter 7: Many of the classical and more recent results that arise from the
Bochner technique are explained. We start with Killing fields and harmonic 1-forms
as Bochner did, and finally, discuss some generalizations to harmonic p-forms. For
the more advanced audience we have developed the language of Clifford multipli-
cation for the study p-forms, as we feel that it is an important way of treating
this material. The last section contains some more exotic, but important, situa-
tions where the Bochner technique is applied to the curvature tensor. These last
two sections can easily be skipped in a more elementary course. The Bochner tech-
nique gives many nice bounds on the topology of closed manifolds with nonnegative
curvature. In the spirit of comparison geometry, we show how Betti numbers of
nonnegatively curved spaces are bounded by the prototypical compact flat manifold:
the torus.

The importance of the Bochner technique in Riemannian geometry cannot be
sufficiently emphasized. It seems that time and again, when people least expect it,
new important developments come out of this simple philosophy.

While perhaps only marginally related to the Bochner technique we have also
added a discussion on how the presence of Killing fields in positive sectional curva-
ture can lead to topological restrictions. This is a rather new area in Riemannian
geometry that has only been developed in the last 15 years.

Chapter 8: Part of the theory of symmetric spaces and holonomy is developed.
The standard representations of symmetric spaces as homogeneous spaces and via
Lie algebras are explained. We prove Cartan’s existence theorem for isometries.
We explain how one can compute curvatures in general and make some concrete
calculations on several of the Grassmann manifolds including complex projective
space. Having done this, we define holonomy for general manifolds, and discuss the
de Rham decomposition theorem and several corollaries of it. The above examples
are used to give an idea of how one can classify symmetric spaces. Also, we show
in the same spirit why symmetric spaces of (non)compact type have (nonpositive)
nonnegative curvature operator. Finally, we present a brief overview of how holo-
nomy and symmetric spaces are related with the classification of holonomy groups.
This is used in a grand synthesis, with all that has been learned up to this point,
to give Gallot and Meyer’s classification of compact manifolds with nonnegative
curvature operator.
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Chapter 9: Manifolds with lower Ricci curvature bounds are investigated in
further detail. First, we discuss volume comparison and its uses for Cheng’s maxi-
mal diameter theorem. Then we investigate some interesting relationships between
Ricei curvature and fundamental groups. The strong maximum principle for contin-
uous functions is developed. This result is first used in a warm-up exercise to give
a simple proof of Cheng’s maximal diameter theorem. We then proceed to prove
the Cheeger-Gromoll splitting theorem and discuss its consequences for manifolds
with nonnegative Ricci curvature.

Chapter 10: Convergence theory is the main focus of this chapter. First, we
introduce the weakest form of convergence: Gromov-Hausdorff convergence. This
concept is often useful in many contexts as a way of getting a weak form of conver-
gence. The real object is then to figure out what weak convergence implies, given
some stronger side conditions. There is a section which breezes through Holder
spaces, Schauder’s elliptic estimates and harmonic coordinates. To facilitate the
treatment of the stronger convergence ideas, we have introduced a norm concept
for Riemannian manifolds. We hope that these norms will make the subject a little
more digestible. The main idea of this chapter is to prove the Cheeger-Gromov con-
vergence theorem, which is called the Convergence Theorem of Riemannian Geom-
etry, and Anderson’s generalizations of this theorem to manifolds with bounded
Ricci curvature.

Chapter 11: In this chapter we prove some of the more general finiteness the-
orems that do not fall into the philosophy developed in chapter 10. To begin,
we discuss generalized critical point theory and Toponogov’s theorem. These two
techniques are used throughout the chapter to prove all of the important theorems.
First, we probe the mysteries of sphere theorems. These results, while often unap-
preciated by a larger audience, have been instrumental in developing most of the
new ideas in the subject. Comparison theory, injectivity radius estimates, and To-
ponogov’s theorem were first used in a highly nontrivial way to prove the classical
quarter pinched sphere theorem of Rauch, Berger, and Klingenberg. Critical point
theory was invented by Grove and Shiohama to prove the diameter sphere theorem.
After the sphere theorems, we go through some of the major results of compari-
son geometry: Gromov’s Betti number estimate, The Soul theorem of Cheeger and
Gromoll, and The Grove-Petersen homotopy finiteness theorem.

Appendix A: Here, some of the important facts about forms and tensors are
collected. Since Lie derivatives are used rather heavily at times we have included
an initial section on this. Stokes’ theorem is proved, and we give a very short and
streamlined introduction to Cech and de Rham cohomology. The exposition starts
with the assumption that we only work with manifolds that can be covered by
finitely many charts where all possible intersections are contractible. This makes
it very easy to prove all of the major results, as one can simply use the Poincaré
and Meyer-Vietoris lemmas together with induction on the number of charts in the
covering.

At the end of each chapter, we give a list of books and papers that cover and
often expand on the material in the chapter. We have whenever possible attempted
to refer just to books and survey articles. The reader is then invited to go from
those sources back to the original papers. For more recent works, we also give
journal references if the corresponding books or surveys do not cover all aspects of
the original paper. One particularly exhaustive treatment of Riemannian Geometry
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for the reader who is interested in learning more is [11]. Other valuable texts that
expand or complement much of the material covered here are [70], [87]and [90].
There is also a historical survey by Berger (see [10]) that complements this text
very well.

A first course should definitely cover chapters 2, 5, and 6 together with whatever
one feels is necessary from chapters 1, 3, and 4. Note that chapter 4 is really a
world unto itself and is not used in a serious way later in the text. A more advanced
course could consist of going through either part III or IV as defined earlier. These
parts do not depend in a serious way on each other. One can probably not cover the
entire book in two semesters, but one can cover parts I, II, and III or alternatively
I, II, and IV depending on one’s inclination. It should also be noted that, if one
ignores the section on Killing fields in chapter 7, then this material can actually
be covered without having been through chapters 5 and 6. Each of the chapters
ends with a collection of exercises. These exercises are designed both to reinforce
the material covered and to establish some simple results that will be needed later.
The reader should at least read and think about all of the exercises, if not actually
solve all of them.

There are several people I would like to thank. First and foremost are those stu-
dents who suffered through my various pedagogical experiments with the teaching
of Riemannian geometry. Special thanks go to Marcel Berger, Hao Fang, Semion
Shteingold, Chad Sprouse, Marc Troyanov, Gerard Walschap, Nik Weaver, Fred
Wilhelm and Hung-Hsi Wu for their constructive criticism of parts of the book.
For the second edition I’d also like to thank Edward Fan, Ilkka Holopainen, Geof-
frey Mess, Yanir Rubinstein, and Burkhard Wilking for making me aware of typos
and other deficiencies in the first edition. I would especially like to thank Joseph
Borzellino for his very careful reading of this text, and Peter Blomgren for writing
the programs that generated Figures 2.1 and 2.2. Finally I would like to thank
Robert Greene, Karsten Grove, and Gregory Kallo for all the discussions on geom-
etry we have had over the years. '

The author was supported in part by NSF grants DMS 0204177 and DMS
9971045.
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