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Preface

The seeds of Continuum Physics were planted with the works of the natural
philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth
century, the trees were fully grown and ready to yield fruit. It was in this envi-
ronment that the study of gas dynamics gave birth to the theory of quasilinear
hyperbolic systems in divergence form, commonly called “hyperbolic conserva-
tion laws”; and these two subjects have been traveling hand-in-hand over the past
one hundred and fifty years. This book aims at presenting the theory of hyper-
bolic conservation laws from the standpoint of its genetic relation to Continuum
Physics. Even though research is still marching at a brisk pace, both fields have
attained by now the degree of maturity that would warrant the writing of such an
exposition.

In the realm of Continuum Physics, material bodies are realized as continuous
media, and so-called “extensive quantities”, such as mass, momentum and energy,
are monitored through the fields of their densities, which are related by balance
laws and constitutive equations. A self-contained, though skeletal, introduction to
this branch of classical physics is presented in Chapter II. The reader may flesh it
out with the help of a specialized text on the subject.

In its primal formulation, the typical balance law stipulates that the time rate
of change in the amount of an extensive quantity stored inside any subdomain of
the body is balanced by the rate of flux of this quantity through the boundary of
the subdomain together with the rate of its production inside the subdomain. In
the absence of production, a balanced extensive quantity is conserved. The special
feature that renders Continuum Physics amenable to analytical treatment is that,
under quite natural assumptions, statements of gross balance, as above, reduce to
field equations, i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular
continuum theories, such as Mechanics, Thermomechanics, Electrodynamics and
so on. In the context of a continuum theory, constitutive equations specify the
nature of the medium, for example viscous fluid, elastic solid, elastic dielectric,
etc. In conjunction with these constitutive relations, the field equations yield closed
systems of partial differential equations, dubbed “balance laws” or “conservation
laws”, from which the equilibrium state or motion of the continuous medium is
to be determined. Historically, the vast majority of notewerthy partial differential
equations were generated through that process. The central thesis of this hook
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is that the umbilical cord joining Continuum Physics with the theory of partial
differential equations should not be severed, as it is still carrying nourishment in
both directions.

Systems of balance laws may be elliptic, typically in statics; hyperbolic, in
dynamics, for media with “elastic” response; mixed elliptic-hyperbolic, in statics
or dynamics, when the medium undergoes phase transitions; parabolic or mixed
parabolic-hyperbolic, in the presence of viscosity, heat conductivity or other dif-
fusive mechanisms. Accordingly, the basic notions shall be introduced, in Chap-
ter I, at a level of generality that would encompass all of the above possibilities.
Nevertheless, since the subject of this work is hyperbolic conservation laws, the
discussion will eventually focus on such systems, beginning with Chapter III.

Solutions to hyperbolic' conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which
propagate on as shocks. Hence, inevitably, the theory must deal with weak solu-
tions. This difficulty is compounded further by the fact that, in the context of weak
solutions, uniqueness is lost. It thus becomes necessary to devise proper criteria
for singling out admissible weak solutions. Continuum Physics naturally induces
such admissibility criteria through the Second Law of thermodynamics. These may
be incorporated in the analytical theory, either directly, by stipulating outright that
admissible solutions should satisfy “entropy” inequalities, or indirectly, by equip-
- ping the system with a minute amount of diffusion, which has negligible effect on
smooth solutions but reacts stiffly in the presence of shocks, weeding out those that
are not thermodynamically admissible. The notions of “entropy” and “vanishing
diffusion”, which will play a central role throughout the book, are first introduced
in Chapters III and IV. , :

From the standpoint of analysis, a very elegant, definitive theory is available
for the case of scalar conservation laws, in one or several space dimensions, which
is presented in detail in Chapter VI. By contrast, systems of conservation laws in
several space dimensions are still terra incognita, as the analysis is currently facing
insurmountable obstacles. The relatively modest results derived thus far, pertaining
to local existence and stability of smooth or piecewise smooth solutions, under-
score the importance of the special structure of the field equations of Continuum
Physics and the stabilizing role of the Second Law of thermodynamics. These
issues are discussed in Chapter V. )

Beginning with Chapter VII, the focus of the investigation is fixed on systems
of conservation laws in one-space dimension. In that setting, the theory has a
number of special features, which are of great help to the analyst, so major progress
has been achieved.

Chapter VIII provides a systematic exposition of the properties of shocks.
In particular, various shock admissibility criteria are introduced, compared and
contrasted. Admissible shocks are then combined, in Chapter IX, with another class
of particular solutions, called centered rarefaction waves, to synthesize wave fans
that solve the classical Riemann problem. Solutions of the Riemann problem may
in turn be employed as building blocks for constructing solutions to the Cauchy
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problem, in the class BV of functions of bounded variation. For that purpose,
two construction methods will be presented here: The random choice scheme, in
Chapter XIII, and a front tracking algorithm, in Chapter XIV. Uniqueness and
stability of these solutions will also be established. The main limitation of this
approach is that it generally applies only when the initial data have sufficiently
small total variation. This restriction seems to be generally necessary, as it turns out
that, in certain systems, when the initial data are “large” even weak solutions to the-
Cauchy problem may blow up in finite time. However, whether such catastrophes
may occur to solutions of the field equations of Continuum Physics is at present
a major open problem.

There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical
to weak solutions and is employed for obtaining a very precise description of
regularity and long time behavior of solutions to scalar conservation laws, in
Chapter XI; as well as to systems of two conservation laws, in Chapter XII.

Finally, Chapter XV introduces the concept of measure-valued solution and
outlines the functional analytic method of compensated compactness, which de-
termines solutions to hyperbolic systems of conservation laws as weak limits of
sequences of approximate solutions, constructed via a variety of approximating
schemes. :

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical advantage of the
reverse course. Moreover, the pace of the proofs is purposely uneven: slow for
the basic, elementary propositions that may provide material for an introductory
course; faster for the more advanced technical results that are addressed to the
experienced analyst. Even though the various parts of this work fit together to form
an integral entity, readers may select a number of independent itineraries through
the book. Thus, those principally interested in the conceptual foundations of the
theory of hyperbolic conservation laws, in connection to Continuum Physics, need
only go through Chapters I-V. Chapter VI, on the scalar conservation law, may
be read virtually independently of the rest. Students intending to study solutions
as compositions of interacting elementary waves may begin with Chapters VII-IX
and then either continue on to Chapters X~XII or else pass directly to Chapter
XIII and/or Chapter XIV. Finally, only Chapter VII is needed as a prerequisite for
the functional analytic approach expounded in Chapter XV.

Twenty-five years ago, it might have been feasible to write a treatise surveying
the entire area; however, the explosive development of the subject over the past
several years has rendered such a goal unattainable. Thus, even though this work
strives to present a panoramic view of the terrain, certain noteworthy features had
to be left out. The most conspicuous absence is a discussion of numerics. This
is regrettable, because, beyond its potential practical applications, the numerical
analysis of hyperbolic conservation laws provides valuable insight to the theory.
Fortunately, a number of specialized texts on that subject are currently available.
Several other important topics receive only superficial treatment here, so the reader
may have to resort to the cited references for a more thorough investigation. On
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the other hand, certain topics are perhaps discussed in excessive detail, as they
are of special interest to the author. A number of results are published here for
the first time. Though extensive, the bibliography is far from exhaustive. In any
case, the whole subject is in a state of active development, and significant new
publications appear with considerable frequency.

My teachers, Jerry Ericksen and Clifford Truesdell, initiated me to Continuum
Physics, as living scientific subject and as formal mathematical structure with
fascinating history. I trust that both views are somehow reflected in this work.

I am grateful to many scientists — teachers, colleagues and students alike —
who have helped me, over the past thirty years, to learn Continuum Physics and
the theory of hyperbolic conservation laws. Since it would be impossible to list
them all here by name, let me single out Stu Antman, John Ball, Alberto Bres-
san, Gui-Qiang Chen, Bernie Coleman, Ron DiPerna, Jim Glimm, Jim Greenberg,
Mort Gurtin, Ling Hsiao, Barbara Keyfitz, Peter Lax, Philippe LeFloch, Tai-Ping
Liu, Andy Majda, Piero Marcati, Walter Noll, Denis Serre, Marshal Slemrod, Luc
Tartar, Konstantina Trivisa, Thanos Tzavaras and Zhouping Xin, who have also
honored me with their friendship. In particular, Denis Serre’s persistent encour-
agement helped me to carry this arduous project to completion.

The frontispiece figure depicts the intricate wave pattern generated by shock
reflections in the supersonic gas flow through a Laval nozzle with wall distur-
bances. This beautiful interferogram, brought to my attention by John Ockendon,
was produced by W.J. Hiller and G.E.A. Meier at the Max-Planck-Institut fiir
Strémungsforschung, in Géottingen. It is reprinted here, by kind permission of the
authors, from An Album of Fluid Motion, assembled by Milton Van Dyke and
published by Parabolic Press in 1982.

I am indebted to Janice D’ Amico for her skilful typing of the manuscript, while
suffering cheerfully through innumerable revisions. I also thank Changqing (Peter)
Hu for drawing the figures from my rough sketches. I am equally indebted to
Karl-Friedrich Koch, of the Springer book production department, for his friendly
cooperation. Finally, I gratefully acknowledge the continuous support from the
National Science Foundation and the Office of Naval Research.

Constantine M. Dafermos
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Chapter 1. Balance Laws

The ambient space for the balance law will be R*, with typical point X. In the
applications to Continuum Physics, R* will stand for physical space, of dimension
one, two or three, in the context of statics; and for space-time, of dimension two,
three or four, in the context of dynamics.

The generic balance law in a domain of R* will be introduced through its
primal formulation, as a postulate that the production of an extensive quantity
in any subdomain is balanced by a flux through the boundary; it will then be
reduced to a field equation. It is this reduction that renders Continuum Physics
mathematically tractable. It will be shown that the divergence form of the field
equation is preserved under change of coordinates. _

The field equation for the general balance law will be combined with consti-
tutive equations, relating the flux and production density with a state vector, to
yield a quasilinear first order system of partial differential equations in divergence
form.

It will be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak
solutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions
with shock fronts, will be surveyed and the geometric structure of BV solutions
will be described.

Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space, it will be expedient to employ matrix no-
tation, which may be deficient in elegance but is efficient for calculation. The
symbol _#6™° will generally denote the space of r x s matrices and R’ will be
identified with .#£"!. Certain objects that are naturally rank (0,2) tensors shall be
here represented by matrices. Consequently, standard conventions notwithstanding,
in order to retain consistency with matrix operations, gradients must be realized
as row vectors and the divergence operator will be acting on row vectors. The unit
sphere in R” will be denoted throughout by .71,
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1.1 Formulation of the Balance Law

A balance law on an open subset %" of R* postulates that the production of a
(generally vector-valued) “extensive” quantity in any bounded measurable subset
Z of & with finite perimeter is balanced by the flux of this quantity through the
measure-theoretic boundary 327 of &7 . Note that 3% is defined as the set of points
whose density relative to both 2 and R¥\ & is nonzero; and & has finite perime-
ter when 0.2 has finite (k— 1)-dimensional Hausdorff measure: 5%~ (. 2) < oo.
With almost all (with respect to %) points X of 3% is associated a vector
N(X) € S2*~! which may be naturally interpreted as the measure-theoretic exte-
rior normal to & at X. A Borel subset & of 3%, oriented through the exterior
normal N, constitutes an oriented surface. The reader unfamiliar with the above
concepts may consult the brief survey in Section 1.7 and the references on geo-
metric measure theory cited in Section 1.10 or may assume, without much loss,
that we are dealing here with open bounded subséts of %~ whose topological
boundary is a Lipschitz (k — 1)-dimensional manifold.

The production is introduced through a functional &2, defined on bounded
‘measurable subsets & of & with finite perimeter, taking values in R”, and
satisfying the conditions

(1.1.1) PAVD) =P(D)+P(D), fTANHE=0,
(1.1.2) . IP(D)| < clD| ,

for some constant ¢ > 0, where | 2| denotes the Lebesgue measure of .
The flux through 827 is induced by a functional ¢Z, defined on the set of
oriented surfaces &, which takes values in R”, and satisfies the conditions

(1.1.3) O (®)] < cH*(®),
for some constant ¢ > 0, and
(1.1.9) OEHEUVB)=0F)+ 0%,

for all disjoint Borel subsets &, & of 3.
Consequently, the balance law states

(1.1.5) P0D) = P (D)
for any bounded measurable subset & of &~ with finite perimeter.

1.2 Reduction to Field Equations

Due to (1.1.1) and (1.1.2), there is a production density P € L®(%"; R") such
that ’

(1.2.1) @(@):f P(X)dX .
@
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Similarly, by virtue of (1.1.3) and (1.1.4), with any bounded measurable sub-
set & of &, with finite perimenter, is associated a bounded Borel flux density
function Q3% : 0% — R” such that

(1.2.2) O&) = f? Qow (X)d S ' (X)

holds for any oriented surface & C 0% . Clearly, if & C 3%, and & C 0%,

then Qs and Q,g; restricted to & must coincide, a.e. with respect to %!
It is remarkable that the seemingly mild assumptions (1.1.3) and (1.1.4) in

conjunction with (1.1.5) imply severe restrictions on the density flux function:

Theorem 1.2:1 Under the assumptions (1.1.3), (1.1.4), (1.1.5), (1.2.1), and (1.2.2),
the value of Qs at X € 0 depends on 3 solely through the exterior normal
N(X) to & at X, namely, there is a bounded measurable function Q : & x
Fk=1 — R" such that

(1.23) Qia(X) = Q(X,N(X)), a.e ondD , with respect to FE*}

Furthermore, Q depends “linearly” on N, i.e., there is a flux density field A €
Lo®(Z; M) such that

(1.2.9) QX,N)=AX)N, ae onZ,
and
(1.2.5) divA =P ,

in the sense of distributions.

Proof. To establish (1.2.3), fix X € &, N € %! and consider any two
bounded measurable subsets @'1 and %% of &, with finite perimeter, such that
Xedz, X e %%, and Ngi(X) Nz (X) = N; see Fig. 1.2.1. The aim is to
show that Qag X)) = Qi (X). Let %, denote the ball in R* of (small) radius r
centered at X. We write the balance law (1.1.5), first for & = 2, N . %, then for
D = 25 N B, and subtract the resulting equations to get

(B, NdD) — O(H, NIDA)
(1.2.6) = P(D\DR) NFB,) — P(D\D) NFBy)

— O((D\D%)NARB,) + O(DB\D) NIFHB,) .
As r | 0, the first two terms on the nght—hand side of (1.2.6) are O(r¥), by virtue
of (1.1.2); the last two terms are o(r*~'), except possibly on a set of r for which

the origin is a point of rarefaction, on account of (1.1.3), since & and 2 are
tangential to each other at X. Consequently, (1.2.2) and (1.2.6) yield

427 [ 000~ [ 0ug0d 100 = o).
B.M3 B,N3%,
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Fig. 1.2.1.

Thus, if X is a Lebesgue point of both Qs and Qsg; then Oy, (X) = Qi (X).

The proof of (1.2.4) will be attained by means of the celebrated Cauchy tetra-
hedron argument. Consider the standard orthonormal basis {Eq:ax=1,---,k}in
R,

For fixed o and X, let us apply the balance law to the rectangle & = {X :
—8 < Xo—Xo <&, |Xp—Xpl <r,B#a}withs, ¢ and r positive small. Letting
€} 0andé$ | 0, one easily deduces Q(X, —E,) = —Q(X, E,), a.e. on &

Now fix N € #*~! with nonzero components N,, @ = 1, - - - Jk,and X € &~
which is a Lebesgue point of Q(-, N)aswellasof Q(-, +E,),a =1, --- , k. Con-
sider the simplex &' = (X : (Xo —Xo)No > —r,a =1,---,k, (X —X)-N <r}
with r positive and small. Notice that 82 contains a face & with exterior normal
N and faces &, o = 1, - - -, k, with exterior normal —(sgn Ny) E,. Moreover, we
have (&) = [N, | (&), a = 1,--- k. Applying the balance law to
this &, dividing through by .#*~1(#) and letting r | 0 yields

k
(1.2.8) Q(X,N) = § :Q(Y, E4)N, ,
{ a=1

which establishes (1.2.4).
It remains to show (1.2.5). When A4 is Lipschitz, the balance law takes the
form '

(1.2.9) / A(X)N(X)d%k"l(X)=/ P(X)dX
0w 4

so that (1.2.5) follows directly from Green’s theorem. In the general case, when
A is merely in L™, even though (1.2.9) may no longer make sense for arbitrary
Z, it will still hold for translates &y = (X e R* : X — ¥ ¢ Z} of any fixed
hypercube & by almost all ¥ in a ball {Y € R* - Y| < €}, with ¢ sufficiently
small to retain &y C &". Accordingly, we fix any test function ¥ € C§°(R*)
with total mass 1, supported in the unit ball, we rescale it by &,
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(1.2.10) Ve(X) = ey (e7'X) ,

and use it to mollify, in the customary fashion, the fields P and A on the set
%, C & of points whose distance from & exceeds &:

(1.2.11) P.=vy.xP, A, =vY.xA.

For any hypercube & C %;, we apply Green’s theorem to the smooth field A,
and use Fubini’s theorem to get

/ divA,(X)dX = f A (X)N(X)dE* (X)
D 3D
= / f Y. (Y)A(X — YIN(X)dYd S (X)
3 JR

= / Ve (Y) / A(Z)N(Z)d¥*'(Z2)dY
(1.2.12) K 2

fl[fe(Y)/ P(Z)dZdY
R 2
= f f Yv.(YYP(X —Y)dYdX
-@' Rk X .
= f P.(X)dX ,
@

whence we conclude divA, = P, on %Z;. Letting ¢ | 0, ylelds (1.2.5) on &, in
the sense of distributions. This completes the proof.

Conversely, a field equation (1.2.5), with A € L®(%Z"; ./lé”"‘) and P €
L*°(Z"; R"), induces a balance law (1.1.5), where &2 is defined by (1.2.1), and
(7 is obtained from (1.2.2), for some function Q5 € L™®(3Z; R") identified
through its action on test functions ¢ € C®(R*):

(1.2.13)
f ¢ (X) Qs (X)dFH* ' (X) =f ¢(X)P(X)dX+/ A(X)(grad )7 (X)dX .
o & @

Clearly, (1.2.13) is derived formally upon multlplymg (1.2.5) by ¢, integrating
over & and applying Green’s theorem.

In fact, the function Q3 may be constructed, through (1.2.13), even in the
more general case where A € L®(%&"; .#™*) satisfies a field equation (1.2.5)
with P a measure on .&". Of course in that case it is no longer generally true that
the value of Q55 at X € 3% depends on 3% solely through the exterior normal
N(X) to 3% at X. Details may be found in the references cited in Section 1.10.



6 1. Balance Laws

1.3 Change of Coordinates

The divergence form of the field equations of balance laws is preserved under
coordinate changes, so long as the fields transform according to appropriate rules.

Theorem 1.3.1 Letr & be an open subset of R* and assume that functions
A€Ll, (&, #*) and P € L}, .(F'; R") satisfy the field equation

(1.3.1) divA =P,

in the sense of distributions on %" . Consider any bilipschitz homeomorphism X*
of & to a subset &™* of R*, with Jacobian matrix

oX*
(1.3.2) J= 3X
such that
(1.3.3) detJ >a>0, aeonZ .
Then A* € L}, (&, M), P* € L}, (Z™*; R") defined by

(13.9) A*o X* = (detJ)"'AJT, P*oX*=(detJ)"'P
satisfy the field equation

(1.3.5) divA* = P*,

in the sense of distributions on 3&™*.

Proof. From (1.3.1) it follows that
(1.3.6) / [A(grad ¢)7 + PpldX =0
Zx

holds for any test function ¢ € C§°(&") and thereby, by completion in W', for
any Lipschitz function ¢ with compact support in .%&".
Given any test function ¢* € CP (&™), consider the Lipschitz function
= ¢* o X*, with compact support in .&". Notice that grad¢ = (grad¢*)J.
Furthermore, dX* = (det J)dX. By virtue of these and (1.3.4), (1.3.6) yields

(1.3.7) fx [A*(grad¢*)T + P*¢*ldX* =0,

which establishes (1.3.5). The proof is complete.



