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PREFACE

Twuis final volume of the Course of Theoretical Physics deals with physical kinetics,
in the wide sense of the microscopic theory of processes in systems not in
statistical equilibrium.

In contrast to the properties of systems that are in statistical equilibrium, the
kinetic properties are much more closely related to the nature of the microscopic
interactions in a particular physical object. This is the reason for the enormous
variety in such properties and the considerably greater complexity of the relevant
theory. The choice of topics to be included in a general course of theoretical
physics thereby becomes less clear.

The scope of the book will be evident from the table of contents. Here we shall
add only a few remarks.

Much attention is given to the theory of gases, as the simplest branch, in
principle, of kinetic theory. Several chapters are concerned with plasma theory, not
only because of the intrinsic physical significance of this department of kinetic
theory, but also because many of the problems involved can be completely solved
and furnish an instructive illustration of the general methods of the kinetic theory.

The kinetic properties of solids are especially multifarious. In the selection of
material for the chapters in question, we naturally had to confine ourselves to the
most general subjects which exhibit the basic physical kinetic phenomena and the
methods of treating them. Here we must again emphasize that the book is part of a
course of theoretical physics, and does not set out to be a textbook of solid state
theory.

There are two evident omissions from the book: the kinetics of magnetic
processes, and the theory of transport phenomena arising from the passage of fast
particles through matter. These omissions are due to lack of time, and we resolved
to accept them for the present edition, so as not to delay its publication any further.
We trust that, although the book thus does not contain ail that it might, everything
in it will be found both interesting and useful.

This volume completes the programme laid down by Lev Davidovich Landau
more than forty years ago. The entire Course comprises the following ten volumes:

Vol. 1 Mechanics

Vol. 2 The Classical Theory of Fields

Vol. 3 Quantum Mechanics (Non-Relativistic Theory)

Vol. 4 Quantum Electrodynamics (formerly Relativistic Quantum Theory)
Vol. 5 Statistical Physics, Part 1

Vol. 6 Fluid Mechanics

ix



X Preface

Vol. 7 Theory of Elasticity

Vol. 8 Electrodynamics of Continuous Media
Vol. 9 Statistical Physics, Part 2

Vol. 10 Physical Kinetics

The position of Vol. 9 results from the fact that it makes considerable use of
material from fluid mechanics and macroscopic electrodynamics.

In the new series of Russian editions begun in 1973, Volumes 1,2, 3, 5,9 and 10
have so far appeared. Volume 7 can be reissued with only minor changes. Volume
4, previously published as Relativistic Quantum Theory, will lose the chapters on
weak and strong interactions and shortly be reissued as Quantum Electrodynamics.
Volumes 6 and 8, which have not been reissued for many years, require more
substantial revision and expansion; we intend to proceed to this in the near future.

We should like to express our sincere thanks to A. F. Andreev, R. N. Gurzhi, V.
L. Gurevich, Yu. M. Kagan, M. 1. Kaganov and I. M. Lifshitz, with whom we have
discussed matters treated in the book. We are also grateful to L. P. Gor’kov and A.
A. Rukhadze, who read the manuscript and made a number of comments.

November 1978 E. M. LiFsHITZ
L. P. PitaAEvskil



NOTATION

Particle distribution function f (Chapters I-VI); momentum distribution function
always relative to d’p.

Occupation numbers of quantum states n(p) for electrons and N (k) for phonons
(Chapters VII and IX-XI); momentum distribution always relative to d*p/(2wh)’.

Collision integral C; linearized collision integral I.

Thermodynamic quantities: temperature T, pressure P, chemical potential u,
particle number density N, total particle number W, total volume V.

Electric field E, magnetic induction B; unit electric charge e (electron charge —e).

In estimates: characteristic lengths L; atomic dimensions and lattice constant d;
mean free path I; speed of sound u.

Averaging is denoted by angle brackets (...) or by a bar over a letter.

Three-dimensional vector suffixes are denoted by Greek letters a, 8, . . .

In Chapters III-VI:
Electron mass m, ion mass M.
Electron charge —e, ion charge ze.
Electron thermal velocity vy, = (T/m)".
Ion thermal velocity vy = (T/M)".
Plasma frequency Q, = (4wN.e*/m)'"?, Q; = (4wNiz’e*IM)'".
Debye length a, = (T/4wN.e)'?, a; = (T{4nNi2’e)'?, a? = a7 + >
Larmor frequency wg, = eB/mc, wg; = zeB/Mc.

References to other volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM = Vol. 3 (Quantum Mechanics, third English edition, 1977)

QE = Vol. 4 (Quantum Electrodynamics, second English edition, 1982).

SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, second English edition, 1987).

TE = Vol. 7 (Theory of Elasticity, third English edition, 1986).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition,
1984). ‘

SP 2)= Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

All are published by Pergamon Press.
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CHAPTER I

KINETIC THEORY OF GASES

§1. The distribution function

THis chapter deals with the kinetic theory of ordinary gases consisting of electric-
ally neutral atoms or molecules. The theory is concerned with non-equilibrium
states and processes in an ideal gas. An ideal gas, it will be recalled, is one so
rarefied that each molecule in it moves freely at almost all times, interacting with
other molecules only during close encounters with them. That is to say, the mean
distance between molecules, 7 ~ N~ (where N is the number of molecules per
unit volume), is assumed large in comparison with their size, or rather in com-
parison with the range d of the intermolecular forces; the small quantity Nd*~
(d/F)* is sometimes called the gaseousness parameter.

The statistical description of the gas is given by the distribution function f(t, g, p)
of the gas molecules in their phase space. It is, in general, a function of the
generalized coordinates (chosen in some manner, and denoted jointly by q) and the
corresponding generalized momenta (denoted jointly by p), and in a non-steady
state also of the time t. Let dr = dq dp denote a volume element in the phase space
of the molecule; dq and dp conventionally denote the products of the differentials
of all the coordinates and all the momenta respectively. The product fdr is the
mean number of molecules in a given element dr which have values of q and p in
given ranges dq and dp. We shall return later to this definition of the mean.

Although the function f will be everywhere understood as the distribution
density in phase space, there is advantage in expressing it in terms of suitably
chosen variables, which need not be canonically conjugate coordinates and
momenta. Let us first of all decide on the choice to be made.

The translational motion of a molecule is always classical, and is described by
the coordinates r = (x, y, z) of its centre of mass and by the components of the
momentum p (or the velocity v = p/m) of its motion as a whole. In a monatomic
gas, the motion of the particles, which are atoms, is purely translational. In
polyatomic gases, the molecules also have rotational and vibrational degrees of
freedom.

The rotational motion of a molecule in a gas is almost always classical too.T It is
described in the first place by the angular momentum vector M of the molecule.
For a diatomic molecule, this is sufficient. Such a molecule is a rotator turning in a
plane perpendicular to M. In actual physical problems, the distribution function

+The condition for the rotation to be classical is #2/21 < T, where I is the moment of inertia of the

molecule and T the temperature of the gas. This condition can be violated in ordinary gases only for
hydrogen and deuterium at low temperatures.



2 Kinetic Theory of Gases

may be regarded as independent of the angle ¢ of rotation of the axis of the
molecule in this plane, all orientations of the molecule in the plane being equally
probable. This is because the angle ¢ changes rapidly as the molecule rotates, and
the result may be understood as follows.

The rate of change of ¢ (the angular velocity of rotation of the molecule) is
¢ = Q = M/IL Its mean value Q2 ~ 9/d, where d is the molecular dimension and & the
mean linear speed. Different molecules have various values of (, distributed in
some way about . Thus molecules which initially had the same ¢ very soon
acquire different values; there is a rapid “mixing” with regard to angles. Let the
distribution of molecules in angle ¢ = ¢, (in the range from 0 to 27) and in () at the
initial instant t =0 be given by a function f(¢o, 2). We separate from it the mean
value independent of ¢:

f=F@+ (o, ),
- 2
F =52 [ 100 0 deu,

so that f'(¢o, ) is a function periodic in ¢, with period 27 and zero mean. In the
course of time, the free rotation of the molecules (¢ = 0t + @,) changes the distribu-
tion function:

flo, 2, ) =F) +f' (e -1, Q).

In the course of time, f’ becomes a more and more rapidly oscillating function of {): the
characteristic period of oscillation AQ ~ 27/t, and becomes small in comparison with
) even during the mean free time of the molecules between collisions. All observable
physical quantities, however, involve some averaging of the distribution function with
respect to ); the contribution of the rapidly oscillating function f’ to such mean values
is negligible. This enables us to replace the distribution f(¢, () by the angle-averaged
function f(Q).

The above arguments are, of course, general ones, and apply to any rapidly
varying quantities (phases) which take values in finite ranges.

Returning to the rotational degrees of freedom of molecules, let us note that in
polyatomic gases the distribution function may also depend on the angles which
specify the fixed orientation of the axes of the molecules relative to the vector M.
For example, in molecules of the symmetrical-top type this is the precession angle
between M and the axis of the top, whereas the distribution function may again be
regarded as independent of the rapidly varying angles of rotation of the top about
its own axis and precession of this axis about M.t

The vibrational motion of the atoms within the molecule is practically always

1In the rotation of a spherical-top molecule, such as CHy, the two angles remain constant which define
the orientation of the molecule relative to M (i.e. the direction of the angular velocity £2). In the rotation
of an asymmetrical-top molecule, a_combination of angles remains constant which represents the
rotational energy Eri= M¢2Li+ M, 2L+ M2, where M;, M,, M; are the components of the
constant vector M along the rotating principal axes of inertia of the molecule.



§1 The Distribution Function 3

quantized, so that the vibrational state of the molecule is specified by the ap-
propriate quantum numbers. Under ordinary conditions (at not too high tem-
peratures), however, the vibrations are not excited at all, and the molecule is at its
ground vibrational level.

In this chapter we shall denote by I' the set of all variables on which the
distribution function depends, other than the coordinates of the molecule as a
whole (and the time t). We separate from the phase volume element dr the factor
dV = dx dy dz, and denote by dI' the remaining factor in terms of the variables
used (and integrated over the angles on which f does not depend). The quantities I’
have an important common property: they are integrals of the motion, and remain
constant for each molecule during its free motion (in the absence of an external
field) between successive collisions; but they are in general altered by each
collision. The coordinates x, y, z of the molecule as a whole vary, of course, during
its free motion.

For a monatomic gas, the quantities T’ are the three components of the momen-
tum p = mv of the atom, so that dT" = d’p. For a diatomic molecule, I' includes not
only the momentum p but also the angular momentum M; accordingly, dT" may be
expressed as

dT =2 d’p M dM doy, (L.1)

where doy is a solid-angle element for the direction of the vector Mt. For a
symmetrical-top molecule, the quantities I' include also the angle 6 between M and the
axis of the top; then

dT = 4n2 d’p M? dM dond cos 8

(one factor of 2w comes from integration over the angle of rotation of the top
about its axis, and another from integration over the angle of precessional rotation).
The integral

f@t,r,Ddl'=N(¢,r)

is the spatial distribution density of gas particles; N dV is the mean number of
molecules in the volume element dV. Here the following comments are needed.
An infinitesimal volume element dV really means one that is not mathematically
but physically small, i.e. a region of space which is very small in comparison with
the characteristic dimensions L of the problem, but still large in comparison with
molecular dimensions. The statement that a molecule is in a given volume element

1This expression can be derived by first writing

dr=d’p5(M.n) d’M do,
= d’p8(M cos )M’ dM dowmd cos 6 de,

where do. = d cos 0 dg is a solid-angle element for the direction of the molecule axis (8 beif\g the angle
between this axis and M). The delta function expresses the fact that M has only two independent
components (corresponding to the number of rotational degrees of freedom of a diatomic molecule): M
is perpendicular to the molecule axis. Integration of this formula over d cos 8 de gives (1.1).
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dV therefore defines its position, at-best, only to within distances of the order of its
dimensions. This is a very important point. If the coordinates of the gas particles
were specified exactly, then the result of a collision between, say, two atoms of a
monatomic gas moving in definite classical paths would also be entirely definite. If,
however, the collision is between atoms in a given physically small volume (as
always in the kinetic theory of gases), the uncertainty in the relative position of the
atoms means that the result of the collision also is uncertain, and only the
probability of one or another outcome can be considered.

We can now specify that the mean number density of particles refers to
averaging over the volumes of physically infinitesimal elements thus defined, and
correspondingly over times of the order of that taken by the particles to traverse
such elements.

Since the dimensions of the volume elements used in defining the distribution
function are large in comparison with the molecular dimensions d, the distances L
over which this function varies considerably must always be large also, in com-
parison with d. The ratio between the size of the physically infinitesimal volume
elements and the mean intermolecular distance F may in general have any value.
There is, however, a difference in the nature of the density N determined by the
distribution function, according to the value of that ratio. If the element dV is not
large compared with 7, the density N is not a macroscopic quantity: the fluctua-
tions of the number of particles present in dV are comparable with its mean value.
The density N becomes a macroscopic quantity only if it is defined with respect to
volumes dV containing many particles; the fluctuations in the number of particles
in these volumes are then relatively small. It is, however, clear that such a
definition is possible only if also the characteristic dimensions of the problem
L>r.

§2. The principle of detailed balancing

Let us consider collisions between two molecules, one of which has values of T
in a given range dT’, and the other in a range dI', and which acquire in the collision
values in the ranges dI" and dI'} respectively; for brevity, we shall refer simply to a
collision of molecules with T and Ty, resulting in I'" and ;. The total number of
such collisions per unit time and unit volume of the gas may be written as a product
of the number of molecules per unit volume, f(t,r,)dTl, and the probability that
any of them has a collision of the type concerned. This probability is always
proportional to the number of molecules Ty per unit volume, f(t,r,[)dl;, and to
the ranges dI” and dT’} of the values of I' for the two molecules after the collision.
Thus the number of collisions T, —»>TI",T} per unit time and volume may be
written as

w([", T}; T, T)ff, dT dT, dI" dTy; 2.1

here and henceforward, the affixes to f correspond to those of their arguments
T: fi=f@t,r,T), f=f(rI), and so on. The coefficient w is a function of all its
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arguments I'.t The ratio of wdI” dI'] to the absolute value of the relative velocity
v—v, of the colliding molecules has the dimensions of area, and is the effective
collision cross-section:

do = PETE0T) ypgp, 2.2)
‘V“V]

The function w can in principle be determined only by solving the mechanical
problem of collision of particles interacting according to some given law. However,
certain properties of this function can be elucidated from general arguments.}

The collision probability is known to have an important property which follows
from the symmetry of the laws of mechanics (classical or quantum) under time
reversal; see QM, § 144. Let I'" denote the values of the quantities obtained from I'
by time reversal. This operation changes the signs of all linear and angular
momenta; hence, if [ =(p,M), then I'" =(—p,—M). Since time reversal inter-
changes the states that are “‘before” and “after” the collisien we have

w(, T T, ) = w7 L), 23

This relation implies, in a state of statistical equilibrium, the principle of detailed
balancing, according to which the number of collisions I, T, =»T", T} is equal, in
equilibrium, to the number I'", I'}" > T7,T\". For, expressing these numbers in the
form (2.1), we have

W(F’, F;, F, rl)fofm dF dFl dF' dr; = W(FT, F|T; I"T, F:T)f(l)f(’n dFle'lrdI"T d[‘;r,

where f; is the equilibrium (Boltzmann) distribution function. The product of phase
volume elements dI" dT'; dI" dT'} is unaltered by time reversal; the differentials on
the two sides of the above equation may therefore be omitted. Next, when t is
replaced by —t, the energy is unchanged: () = e(T'T), where €(T) is the energy of
the molecule as a function of the quantities I'. Since the equilibrium distribution
function (in a gas at rest as a whole) depends only on the energy,

fo(T') = constant x e~<®/T, 2.4

where T is the gas temperature, we have fo(I') = fo(T'"). Lastly, by the law of
conservation of energy in the collision of two molecules € + ¢, = €'+ €;. Hence

fofor = fofors (2.5)

and the above equation reduces to (2.3).
This assertion remains valid, of course, for a gas moving with a macroscopic

$The characteristics of the initial (i) and final (f) states in w are written from right to left, w(f, i) as is
customary in quantum mechanics.

11t should be emphasized immediately that, although the free motion of molecules is assumed classical,
this does not at all mean that their collision cross-section need not be determined quantum-mechanic-
ally; in fact, it usually must be so determined. The whole of the derivation of the transport equation
given here is independent of the classical or quantum nature of the function w.
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velocity V. The equilibrium distribution function is then
fo(T') = constant X exp (- e(l‘)} - v), (2.6)

and equation (2.5) continues to be valid because of the conservation of momentum
in collisions: p+p;=p’ +pi.T

Note that (2.5) depends only on the form of the distribution (2.4) or (2.6) as a
function of I'; the parameters T and V may vary through the gas volume.

The principle of detailed balancing may also be expressed in a somewhat
different form. To do so, we apply not only time reversal but spatial inversion,
changing the sign of all coordinates. If the molecules are not sufficiently sym-
metrical, they become their stereoisomers on inversion, and they cannot be made
to coincide with these by any rotation of the molecule as a whole.t In such cases,
inversion would mean replacing the gas by an essentially different substance, and
no new conclusions would be available as to its properties. If, however, the
symmetry of the molecule does not allow stereoisomerism, the gas remains the
same on inversion, and the quantities which describe the properties of a macro-
scopically homogeneous gas must remain unaltered.

Let I'™ denote the set of quantities obtained from I' by simultaneous time
reversal and inversion. Inversion changes the sign of all ordinary (polar) vectors,
including the momentum p, but leaves unchanged the axial vectors, including the
angular momentum M. Hence, if ' =(p, M), then I'"" = (p, —-M). As well as (2.3),
we have the equation$

w(, [T, T) = wT™, [, ', I}). 2.7

Transitions corresponding to the functions w on the two sides of (2.3) are said to
be mutually time-reversed. They are not strictly direct and reverse transitions,
since I and T'7 are not the same. For a monatomic gas, however, the principle of
detailed balancing can also be expressed in relation to direct and reverse
transitions. Since the quantities I are here just the three momentum components of
the atom, I'=TTF =p, and from (2.7)

w(p', pi; P, P) = w(p, pi; P’ P1)- (2.8)

This is detailed balancing in the literal sense: each microscopic collision process is
balanced by the reverse process.

The function w satisfies one further general relation which does not depend on
the symmetry under time reversal, and which can be most clearly derived in

tEquation (2.6) is obtained from (2.4) by transforming the energy of the molecule from the frame of
reference Ko in which the gas is at rest to the frame K in which it moves with velocity V:
el =e-p.V+ imV?; see Mechanics (3.5).

Stereoisomers exist for molecules that have no centre of symmetry and no plane of symmetry.

$If the quantities T include also variables specifying the rotational orientation of the molecule, they
too must be transformed in a certain way in going to I'* or I''*. For instance, the precession angle of a
symmetrical top is given by the product M. n, where n is the direction of the axis of the molecule; this
quantity changes sign both under time reversal and under inversion.
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quantum-mechanical terms, the transitions considered being between states form-
ing a discrete series. These are states of a pair of molecules moving in a given finite
volume. The probability amplitudes of various collision processes form a unitary
matrix S, the scattering matrix or S-matrix. The unitarity condition is §*§=1,or,
in explicit form with the matrix suffixes which label the various states,

> SiaSw = S, S%Su = 8.

In particular, when i =k,

2 |S,.i]2 =1.

The square |S,|? gives the probability of a collision with the transition i »n,t and
the above equation is simply the normalization condition for probabilities: the sum
of the probabilities for all possible transitions from a given initial state is unity. The
unitarity condition may also be written as §$* =1, with the opposite order of the
factors § and §*. We then have =, S;,S}. = 84, and when i =k

2 |Si,.|2 =1,
so that the sum of the probabilities for all possible transitions to a given final state
is unity. Subtracting from each sum the one term with n =i (transition without
change of state), we can write

2! Isni|2 = 2: |Sm|2-
This is the required equation. In terms of the functions w, it becomes

jw(I", Iy; T, T)dIdr =jw(l‘, r; I, ) drdri. 2.9

§3. The Boltzmann transport equation

Let us now go on to derive the basic equation in the kinetic theory of gases,
which is satisfied by the distribution function f(t,r, T).

If collisions between molecules were entirely negligible, each gas molecule would
constitute a closed subsystem, and the distribution function of the molecules would
obey Liouville’s theorem, according to which

dffdt =0; 3.1)

tFor large values of the time ¢, IS.* is proportional to ¢, and division by ¢ gives the l;ansition
probability per unit time; cf QE, §65. If the wave functions of the initial and final partlc}es are
normalized to one particle per unit volume, this “probability” has the same dimensions (volume/time) as
the quantity w dI" dT'; defined by (2.1).
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see SP 1, §3. The total derivative here corresponds to differentiation along the
phase path of the molecule, which is determined by its equations of motion.
Liouville’s theorem applies to a distribution function defined as the density in
phase space (i.e. in the space of variables that are canonically conjugate general-
ized coordinates and momenta). This of course does not prevent f itself from being
subsequently expressed in terms of any other variables.

In the absence of an external field, the quantities I for a freely moving molecule
remain constant, and only its coordinates r vary; then

dfldt = af/at + v . Vf. (3.2)

If, on the other hand, the gas is in, for example, an external field U (r) acting on the
coordinates of the centre of mass of the molecule (a gravitational field, say), then

df|dt = af/at +v . Vf +F . af/op, (3.3)

where F = — VU is the force exerted on the molecule by the field.

When collisions are taken into account, (3.1) is no longer valid, and the dis-
tribution function is no longer constant along the phase paths. Instead of (3.1), we
have

dfldt = C(f), 3.4

where C(f) denotes the rate of change of the distribution function by virtue of
collisions: dV dT" C(f) is the change due to collisions, per unit time, in the number
of molecules in the phase volume dV dT. Equation (3.4), in the form

aflot = —v.Vf+ C(f),

with df/dt taken from (3.2), gives the total change in the distribution function at a
given point in phase space; the term dV dT v.Vf is the decrease per unit time in
the number of molecules in this phase space element because of their free motion.

The quantity C(f) is called the collision integral, and equations of the form (3.4)
go by the general name of transport equations. Of course, the transport equation
becomes meaningful only when the form of the collision integral has been
established. We shall now discuss this topic.

When two molecules collide, their values of I' are changed. Hence every collision
undergone by a molecule transfers it out of a particular range dT; such collisions
are referred to as “losses”. The total number of collisions T, I,-»I, T} with all
possible values of I';,I", T} and given T', occurring in a volume dV per unit time, is
equal to the integral

dv dr f w(l", T}; T, T)ff, dT, dI" dT;.

There are also collisions (“‘gains”) which bring into the range dI’ molecules which
originally had values outside that range. These are collisions I'", [{— T, T';, again with
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all possible I';, I, I'{ and given I'. The total number of such collisions in the volume dV
per unit time is

dv dr J' w(T, Ty; ", T)f'f1 dT, dT" T,

Subtracting the losses from the gains, we thus find that as a result of all collisions
the relevant number of molecules is increased, per unit time, by

dv dFI(w'f’f{ — wff)dT, dT" dT7,
where for brevity

w=w(l" T, T, w=wT;I,T). (3.5

We therefore have the following expression for the collision integral:
Ccf)= I (w'f'fi— wff)) dT", dT" dT';. (3.6)

In the second term in the integrand, the integration over dI” dI'{ relates only to w,
since f and f, do not depend on these variables. This part of the integral can
therefore be transformed by means of the unitarity relation (2.9). The collision
integral then becomes

)= [ wigsi- 1 v dr ar, a7

in which both terms have the factor w'.t
Having established the form of the collision integral, we can write the transport
equation as

aflat+v.Vf=Iw'(f’f{—ff,) dr, dI" dr. 3.8)

This integro-differential equation is also called the Boltzmann equation; it was first
derived by Ludwig Boltzmann, the founder of the kinetic theory, in 1872.

The equilibrium statistical distribution must satisfy the transport equation iden-
tically. This condition is in fact fulfilled. The equilibrium distribution is stationary
and (in the absence of an external field) uniform; the left-hand side of (3.8) is
therefore identically zero. The collision integral also is zero, since the integrand
vanishes by virtue of (2.5). The equilibrium distribution for a gas in an external field
also satisfies the transport equation, of course. We need only recall that the:
left-hand side of the transport equation is the total derivative df/dt, which is

+The possibility of transforming the collision integral by means of (2.9) was noted by E. C. G
Stueckelberg (1952).



