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PREFACE

The basic concepts of Markov chains were introduced by A. A. Markov
in 1907. Since that time Markov chain theory has been developed by
a number of leading mathematicians. It is only in very recent times
that the importance of Markov chain theory to the social and biological
sciences has become recognized. This new interest has, we believe,
produced a real need for a treatment, in English, of the basic ideas
of finite Markov chains.

By restricting our attention to finite chains, we are able to give
quite a complete treatment and in such a way that a minimum amount
of mathematical background is needed. For example, we have written
the book in such a way that it can be used in an undergraduate prob-
ability course, as well as a reference book for workers in fields out-
side of mathematics.

The restriction of this book to finite chains has made it possible to
give simple, closed-form matrix expressions for many quantities usually
given as series. It is shown that it suffices for all types of problems to
consider just two types of Markov chains, namely absorbing and ergodie
chains. A “fundamental matrix” is developed for each type of chain,
and the other interesting quantities are obtained from the fundamental
matrices by elementary matrix operations.

One of the practical advantages of this new treatment of the sub-
ject is that these elementary matrix operations can easily be programed
for a high-speed computer. The authors have developed a pair of pro-
grams for the IBM 704, one for each type of chain, which will find a
number of interesting quantities for a given process directly from the
transition matrix. These programs were invaluable in the computation
of examples and in the checking of conjectures for theorems.

A significant feature of the new approach is that it makes no use of
the theory of eigen-values. The authors found, in each case, that the
expressions in matrix form are simpler than the corresponding expres-
sions usually given in terms of eigen-values. This is presumably due
to the fact that the fundamental matrices have direct probabilistic in-
terpretations, while the eigen-values do not.

The book falls into three parts. Chapter I is a very brief summary
of prerequisites. Chapters II-VI develop the theory of Markov chains.
Chapter VII contains applications of this theory to problems in a variety
of fields. A summary of the symbols used and of the principal defi-
nitions and formulas can be found in the appendices together with page
references. Therefore, there is no index, but it is hoped that the de-
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vi PREFACE

tailed table of contents and the appendices will serve a more useful
purpose.

It was not intended that Chapter I be read as a unit. The book can
be started in Chapter II, and the reader has the option of looking up the
brief summary of any prerequisite topic not familiar to him, when he
needs it in a later chapter.*

The book was designed so that it can be used as a text for an under-
graduate mathematics course. For this reason the proofs were carried
out by the most elementary methods possible. The book is suitable
for a one-semester course in Markov chains and their applications.
Selections from the book (presumably from Chapters II, III, IV, and
possibly VII) could also be used as part of an upper-class course in
probability theory. For this use, exercises have been given at the end
of Chapters II-VI.

The following system of notation has been used in the book: Num-
bers are denoted by small italic letters, matrices by capital italics, vectors
by Greek letters. Functions, sets, and other abstract objects are de-
noted by boldface letters.

The authors gratefully acknowledge support by the National Science
Foundation to the Dartmouth Mathematics Project. Many of the origi-
nal results in this book were found by the authors while working on
this project. The authors are also grateful for computing time made
available by the M.LT. and Dartmouth Computation Center for the
development, of the above-mentioned programs and for the use of these
programs.

The authors wish to express their thanks to two research assistants,
P. Perkins and B. Barnes, for many valuable suggestions as well as for
their careful reading of the manuseript. Thanks are due to Mrs. M.
Andrews and Mrs. H. Hanchett for typing the manuscript.

THE AUTHORS
Hanover, New Hampshire
September, 1959

* A more detailed treatment of most of these topics may be found in one of the
following books: (1) Modern Mathematical Methods and Models, Volumes 1 and 2,
by the Dartmouth Writing Group, published by the Mathematical Association of
America, 1958. [Referred to as M1 (2) Introduction to Finite Maithematics, by
Kemeny, Snell, and Thompson, Prentice-Hall, 1957. [Referred to as FM.] (3)
Finite Mathematical Siructures, by Kemeny, Mirkil, Snell, and Thompson, Prentice-
Hall, 1959. [Referred to as FMS.] For the prerequisites in probability theory, as
well as a treatment of Markov chains from a different point of view, the reader may
also wish to consult Introduction to Probability Theory and Its Applications, by W.
Feller, Wiley, 1957,
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CHAPTER 1

PREREQUISITES

§ 1.1 Sets. By a set a mathematician means an arbitrary but well-
defined collection of objects. Sets will be denoted by bold capital
letters. The objects in the collection are called elements.

If A is a set, and B is a set whose elements are some (but not neces-
sarily all) of the elements of A, then we say that B is a subset of A,
symbolized as B A. If the two sets have exactly the same elements,
then we say that they are equal, i.e. A=B. Thus A=B if and only
ifA<B and B A. IfBisasubset of A and is not equal to A, then we
say that it is a proper subset, and write B A. 1f A and B have no
element in common, we say that they are disjoint.

Very frequently we will deal with a given set of objects, and discuss
various subsets of it. The entire set will be called the universe, U.
A particularly interesting subset is the set with no elements, the
empty set E.

Given a set, there are a number of ways of getting new subsets from
old ones. If A and B are both subsets of U, then we define the follow-
ing operations:

(1) The complement of A, A, has as elements all the elements of U

which are not in A.
(2) The union of A and B, A U B, has as elements all the elements of
A and all the elements of B.

(3) The tniersection of A and B, A N B, has as elements all the

elements that A and B have in common.

(4) The difference of A and B, A —B has as elements all the elements

of A that are not in B.

To illustrate these operations, we will list some easily provable
relations between these sets:

U=E AUB=ANnB ANB=BnNnA
A=A ANnB=AUB AUE=A
A-B=AnB AUB=BUA ANE=E
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If Ay, Ay, ..., A, are subsets of U, and every element of U is in one
and only one set A;, then we say that A={A,, Ay, ..., A/} is a par-
tition of U.

If we wish to specify a set by listing its elements, we write the
elements inside curly brackets. Thus, for example, the set of the
first five positive integers is {1, 2, 3, 4, 5}. The set {1, 3, 5} is a proper
subset of it. The set {2}, which is also a subset of the five-element set,
is called a unit sef, since it has only one element.

In the course of this book we will have to deal with both finite and
infinite sets, i.e. with sets having a finite number or an infinite number
of elements. The only infinite sets that are used repeatedly are the
set of integers {1, 2, 3, . . .} and certain simple subsets of this set.

For a more detailed account of the theory of sets see FM Chapter 11
or FMS Chapter II.}

§1.2 Statements. We are concerned with a process which will
frequently be a scientific experiment or a game of chance. There are
a number of different possible outcomes, and we will consider various
statements about the outcome.

We form the set U of all logically possible outcomes. These must
be so chosen that we are assured that exactly one of these will take
place. The set U is called the possibility space. If p is any statement
about the outcome, then it will (in general) be true according to some
possibilities, and false according to others. The set P of all possibilities
which would make p true is called the truth set of p. Thus to each
statement about the outcome we assign a subset of U as a truth set.
The choice of U for a given experiment is not unique. For example,
for two tosses of a coin we may analyze the possibilities as
U={HH, HT, TH, TT} or U={0H, 1H, 2H}. In the first case we give
the outcome of each toss and in the second only the number of heads
which turn up. (For a more detailed discussion of this concept see
FM Chapter II or FMS Chapter I1.)

Given two statements p and q having the same subject matter (i.e.
the same U), we have a number of ways of forming new statements
from them. (We will assume that the statements have P and Q as
truth sets:)

(1) The statement ~p (read “not p”) is true if and only if p is false.
Hence it has P as truth set.
(2) The statement p\/ q (read “p or q”) is true if either p is true or
q is true or both. Hence it has P U @ as truth set.
t FM =Kemeny, Snell, and Thompson, Introduction to Finite Mathematics, Engle-
wood Cliffs, N.J., Prentice-Hall, Inc., 1957.

FMS = Kemeny, Mirkil, Snell, and Thompson, Finite Mathematical Structures, Engle-
wood Cliffs, N.J., Prentice-Hall, Inc., 1959.
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(3) The statement p Aq (read “p and q”) is true if both p and q are
true. Hence it has P N Q as truth set.

Two special kinds of statements are among the principal concerns
of logic. A statement that is true for each logically possible outcome,
that is, a statement having U as its truth set, is said to be logically
true (such a statement is sometimes called a tautology). A statement
that is false for each logically possible outecome, that is a statement
having E as its truth set, is logically false or self-contradictory.

Two statements are said to be equivalent if they have the same truth
set. 'That means that one is true if and only if the other is true.

The statements pi, pa, - - - , pr are inconsistent if the intersection of
their truth sets is empty, i.e., Pt "Ps N - - N Pr=E. Otherwise
they are said to be consistent. If the statements are inconsistent, then
they cannot all be true. If they are consistent, then they could all be
true.

The statements pi, pz, ..., px are said to form a complete set of
alternatives if for every element of U exactly one of them is true. This
means that the intersection of any two truth sets is empty, and the
union of all the truth sets is U. Thus the truth sets of a complete set
of alternatives form a partition of U. A complete set of alternatives
provides a new way (and normally a less detailed way) of analyzing
the possible outcomes.

§ 1.3 Order relations. We will need some simple ideas from the
theory of order relations. A complete treatment of this theory will
be found in M4, Vol. 1T, Unit 2.+ We will take only a few concepts
from that treatment.

Let R be a relation between two objects (selected from a specified
set U). We denote by aRb the fact that a holds the relation R to b.
Some special properties of such relations are of interest to us.

1.3.1 DgzrintTiON.  The relation R is reflexive of xRx holds for all
x in U.

1.3.2 DerviNiTION. The relation R is symmetric if whenever xRy
holds, then yRx also holds, for all x, y in U.

1.3.3 DeriNiTioN. The vrelation R ¢s transitive if whenever
xRy AyRz holds, then xRz also holds, for all x, y, z in U.

1.3.4 DgrINITION. A vrelation that is reflexive, symmetric, and
transitive 1s an equivalence relation.

The fundamental property of an equivalence relation is that it
partitions the set U. More specifically, let us suppose that R is an

t M4=Modern Mathematical Methods and Models, by the Dartmouth Writing Group.
Mathematical Association of America, 1958.
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equivalence relation defined on U. We put elements of U into classes
in such a manner that two elements a and b are in the same class if
aRb. Tt can be shown that the resulting classes are well defined and
mutually exclusive, giving us a partition of U. These classes are the
equivalence classes of R.

For example, let xRy express that “x is the same height as y,” where
U is a set of human beings. Then the resulting partition divides these
people according to their heights. Two men are in the same equiva-
lence class if and only if they are the same height.

1.3.5 DeEFINITION. A relation T is said to be consistent with the
equivalence relation R if, given that xRy, then iof xTz kolds so does
yTz, and if 2Tx holds so does zTy.

1.3.6 DEerINITION. A relation that is reflexive and transitive 1s
known as @ weak ordering relation.

A weak ordering relation can be used to order the elements of U.
Given a weak ordering T, and given any two elements a and b of U,
there are four possibilities: (1) aTh AbTa; then the two elements are
“alike” according to T. (2) aTb A~ (bTa); then a is “ahead” of b.
(3) ~(aTb) AbTa; then b is “ahead.” (4) ~ (aTh) A~ (bTa); then we
are unable to compare the two objects.

For example, if xTy expresses that “I like x at least as well as y,”
then the four cases correspond to “I like them equally,” “I prefer x,”
“I prefer y,” and “I cannot choose,” respectively.

The relation of being alike acts as an equivalence relation. Indeed,
it can be shown that if T is a weak ordering, then the relation xRy that
expresses that xTy AyTx is an equivalence relation consistent with T.
Thus T serves both to classify and to order. Consistency assures us
that equivalent elements of U have the same place in the ordering.

For example, if we choose “is at least as tall” as our weak ordering,
this determines the equivalence relation “is the same height,” which is
consistent with the original relation.

1.3.7 DerinitioN. If T is a weak ordering, then the relation
xTy AyTx is the equivalence relation determined by it.

1.3.8 DerinttioN. If T is a weak ordering, and the equivalence
relation determined by it is the identity relation (x=y) then T is a
partial ordering.

The significance of a partial ordering is that no two distinct elements
are alike according to it. One simple way of getting a partial ordering
is as follows: Let T be a weak ordering defined on U. Define a new
relation T* on the set of equivalence classes by saying that uT*v
holds if every element of u bears the relation T to every element of v.
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This is a partial ordering of the equivalence classes, and we call it the
partial ordering induced by T.

1.3.9 DeriNiTION. An element a of U is called a minimal element
if aTx implies xTa for all xe U. Ifa minimal element is unique, we
call 7t ¢ minimum.

We can define “maximal element” and “maximum” similarly. If
U is a finite set, then it is easily shown that for any weak ordering there
must be at least one minimal element. However, this minimal element
need not be unique. Similarly, the weak ordering must have a maxi-
mal element, but not necessarily a maximum.

§ 1.4 Communication relations. An important application of order
relations is the study of communication networks. Let us suppose
that r individuals are connected through a complex network. Each
individual can pass a message on to a subset of the individuals. This
we will call direct contact. These messages may be relayed, and
relayed again, etc. This will be indirect contact. 1t will not be assumed
that a member can contact himself directly. Let aTh express that the
individual a can contact b (directly or indirectly) or that a=b. It is
easy to verify that T is a weak ordering of the set of individuals. It
determines the equivalence relation xTy AyTx, which may be read as
“x and y can communicate with each other, or x=y.”

This equivalence relation may be used to classify the individuals.
Two men will be in the same equivalence class if they can communicate,
that is, if each can contact the other one. The induced partial ordering
T* has a very intuitive meaning : The relation uT*v holds if all members
of the class u can contact all members of the class v, but not con-
versely unless u=v. Thus the partial ordering shows us the possible
flow of information.

In particular, u is a maximal element of the partial ordering if its
members cannot be contacted by members of any other class, and u
is a minimal element if its members cannot contact members of other
classes. Thus the maximal sets are message initiators, while the
minimal sets are terminals for messages. (See M* Vol. II, Unit 2.)

It is interesting to study a given equivalence class. Any two
members of such a class can communicate with each other. Hence
any member can contact any other member. But how long does it
take to contact other members? As a unit of time we will take the
time needed to send a message from any one member to any member
he can contact directly. We call this one step. We will assume that
member ¢ sends out a message, and we will be interested to know where
the message could possibly be after n steps.
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Let Ny be the set of n such that a message starting from member ¢
can be in member j’s hands at the end of n steps. We will first con-
sider Ny, the possible times at which a message can return to its
originator. It is clear that if @ € Ny and b € Ny, then a+b € Ny; after
all the message can return in a steps and can be sent out again and be
received back after b more steps. So the set Ny; is closed under addition.
The following number-theoretic result will be useful. Its proof is
given at the end of the section.

1.4.1 TuroreEM. A set of positive integers that is closed under
addition contains all but a finite number of multiples of its greatest
common divisor.

If the greatest common divisor of the elements of Ny; is designated
dy, it is clear that the elements of Ny; are all multiples of d;. But
Theorem 1.4.1 tells us in addition that all sufficiently high multiples
of d; are in the set.

Since each member can contact every other member in its equiva-
lence class, the N;; are non-empty. We next prove that for < and j
in the same equivalence class, di=d;=d, and that the elements of
a given Ny; are congruent to each other modulo d (their difference is a
multiple of d). Suppose that a € Ny, b € Ny, and ¢ € Ny;.

First of all, member ¢ can contact himself by sending a message to
member j and getting a message back. Hence a+c¢ € Ny. The mes-
sage could also go to member j, come back to member j, and then go
to member ¢. This could be done in a4+ kd;+c steps, where k is
sufficiently large. Hence d; must be a multiple of d;. But in exactly
the same way we can prove that d; is a multiple of d;. Hence
di=d;=d.

Or again, the message could go to member j in b steps, and then back to
member . Hence b+¢ € Ni;. Hence a4+ ¢ and b+ ¢ are both divisible
by d, and thus we see that a=b (mod d). Thus the elements of a
given Ny are congruent to each other modulo d. We can thus intro-
duce numbers #;;, with 0<#;<d, so that any element of Ny is con-
gruent to ¢;, modulo ¢. It is also easy to see that Ny contains all but
a finite number of the numbers ¢;; + kd.

In particular we see that #; =0 in each case, and hence #;;+t;;,=0
(mod d). Also tyj +tm=tin (mod d). From this it is easily seen that
t;j=0 is an equivalence relation. Let us call such an equivalence
class a eyclic class.

Since & +tjm =tim (mod d), we see that {;; =1, if and only if t;,, =0,
hence if and only if members j and m are in the same cyclic class.
Let » be any integer. If n=t; (mod d), then the message originating
from member ¢ can only be in this one cyclic class after n steps. From
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this it immediately follows that there are exactly d cyclic classes, and
that the message moves cyclically from class to class, with cycle of
length d. It is also easily seen that after sufficient time has elapsed,
it can be in the hands of any member of the one cyclic class appropriate
for n.

While this description of an equivalence class of the communication
network holds in complete generality, the cycle degenerates when
d=1. In this case there is a single “cyclic class,” and after sufficient
time has elapsed the message can be in the hands of any member at
any time.

In particular, it is worth noting that if any member of the equivalence
class can contact himself directly, then d=1. This is immediately
seen from the fact that d is a divisor of any time in which a member
can contact himself, and here d has to divide 1.

The number-theoretic result, § 1.4.1, is of such interest that its
proof will be given here.

First of all we note that if the greatest common divisor d of the set
is not 1, then we can divide all elements by d, and reduce the problem
to the case d=1. Hence it suffices to treat this case. Here we have
a set of numbers whose greatest common divisor is 1, and we must
have a finite subset with this property. Hence, by a well-known
result, there is a linear combination. ainy+agns+ - .- +azng of the
elements (with positive or negative integers a;) which is equal to 1.
If we collect all the positive and all the negative terms separately,
and remember that the set is closed under addition, we note that there
must be elements m and » in the set, such that m —n=1 (m being the
sum of the positive terms, and —n the sum of the negative terms).
Let ¢ be any sufficiently large number, or more precisely ¢ >n(n—1).
We can write g=an+b, where a>(n—1) and o<b<(n—1). Then
we see that ¢ = (ad—b)n+ bm, and hence ¢ must be in the set.

§ 1.5 Probability measures. In making a probability analysis of an
experiment there are two basic steps. First, a set of logical possibili-
ties is chosen. This problem was discussed in § 1.2. Second a proba-
bility measure is assigned. The way that this second step is carried
out will be discussed in this section. We consider first a finite possi-
bility space. (For a more detailed discussion see FM Chapter IV or
FMS Chapter 111.)

1.5.1 DeriNITION. Let U={ay, aq, ..., a,} be a set of logical possi-
bilities. A probability measure for U is obtained by assigning to each
element a; a positive number w(a;), called a weight, in such a way that
the weights assigned have sum 1. The measure of a subset A of U,
denoted by m(A), is the sum of the weights assigned to elements of A.
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1.5.2 TuroreMm. A probability measure m assigned to a possibility
set U has the following properties:

(1) For any subset P of U, 0<m(P)<1.
(2) If P and Q are disjoint subsets of U, then m(P U Q) =m(P) +m(Q).

(3) For any subsets P and Q of U, m(P U Q)=m(P)+m(Q)—
m(P N Q).
(4) For any set P in U, m(P)=1—m(P).

1.5.3 DrrINITION. Let p be a stufement relative to a set U having truth
set P. The probability of p relative to the probability measure m
s defined as m(P).

In any discussion where there is a fixed probability measure we shall
refer simply to the probability of p without mentioning each time the
measure. From Theorem 1.5.2 and the relation of the connectives to
the set operations, we have the following theorem:

1.5.4 TureoreMm. Let U be a set of possibilities for which a probability
measure has been assigned. The probabilities of statements determined
by this measure have the following properties:

(1) For any statement p, 0<Pr(p]< 1.
(2) If p and q are inconsistent then Pr(p\/ q}=Pr(p]+ Pr[q].
(3) For any two statements p and q, Pr{p\/ q]=Pr{p]+Pr{q]—

Pr(p /\q].
(4) For any statement p, Pr[~p]=1—Pr[p].

1.5.5 ExamprrLE. Given any finite set having s elements we can
determine a probability measure by assigning weight 1/s to each
element of U. This measure is called the equiprobable measure. For
any set A with » elements, m(A)=r/s. For example, this is the mea-
sure which would normally be assigned to the outcomes for the roll of
a die. In this case U={L, 2, 3, 4,5, 6} and a weight of 1/¢ is assigned
to each.

1.5.6 ExamprLE. As an example of a situation where different
weights would be assigned consider the following: A man observes a
race between three horses a, b, and e¢. He feels that a and b have the
same chance of winning but that ¢ is twice as likely to win as a. We
take the possibility set to be U={a, b, ¢} and assign weights w(a)=1/4,
w(b)=1/4 and w(e)="1/s.

It is occasionally necessary to extend the above concepts to include
the case of an experiment with an infinite sequence of possible outcomes.
For example, consider the experiment of tossing a coin until the first
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time that a head turns up. The possible outcomes would be
U={1,2,3,...}. The above definitions and theorems applyequally
well to this possibility set. We will have an infinite number of weights
assigned but we still must require that they have sum 1. In the
example just mentioned we would assign weights (Y2, Y4, Yay oo )
These weights form a geometric progression having sum 1.

§ 1.6 Conditional probability. It often happens that a probability
measure has been assigned to a set U and then we learn that a certain
statement q relative to U is true. With this new information we change
the possibility set to the truth set Q of . We wish to determine a
probability measure on this new set from our original measure m. We
do this by requiring that elements of Q should have the same relative
weights as they had under the original assignment of weights. This
means that our new weights must be the old weights multiplied by a
constant to give them sum 1. This constant will be the reciprocal of
the sum of the weights of all elements in Q, i.e. 1/m(Q). (See TM
Chapter IV or FMS Chapter 111.)

1.6.1 DurinitioN. Let U={ai, ag, ..., a;} be a possibility set for
which « measure has been assigned, determined by weights w(a;). Let
q be a statement relative to U (not a self-contradiction). The con-
ditional probability measure given q is a probability measure defined
on Q the truth set of q, determined by weights

- w(a;)
wlay) = —=-
®) = m@
1.6.2 DrviniTioN. Let p and q be two statements relative to a set
U (q not a self-contradiction). The conditional probability of p given q,
denoted by Pr(p|q] is the probability of p computed from the conditional
probability measure grven (.

1.6.3 Turorem. Lel p and q be two statements relative to U (q not
a self-contradiction). Assume that a probability measure m has been
asstgned to U.  Then

Pr(p /Aq]
Pr(q]

where Pr[p Aq] and Pr[q] are found from the measure m.

Prplq] =

1.6.4 Exampre. In Example 1.5.6 assume that the man learns
that horse b is not going to run. This causes him to consider the new
possibility space Q={a,c}. The new weights which determine the

" _ /4 _ 2
conditional measure are w(a)=1/4J/rl/2=1/3 and w(c):—/—~=2/3.
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We observe that it is still twice as likely that ¢ will win than it is that
a will win.

1.6.5 DermNiTiON. Two statements p and q (neither of whick is
a self-contradiction) are independent if Pr(p A\q] =Pr[p]- Prlq].

It follows from Theorem 1.6.3 that p and q are independent if and
only if Pr{p|q]="Pr{p] and Pr{q|p]=Pr{q]. Thus to say that p and q
are independent is to say that the knowledge that one is true does not
effect the probability assigned to the other.

1.6.6 ExampLr. Consider two tosses of a coin. We describe the
outcomes by U={HH, HT, TH, TT}. We assign the equiprobable
measure. Let p be the statement “a head turns up on the first toss”
and q the statement “a head turns up on the second toss.” Then
Pr(p Aql=1/s, Pr(p]=Pr[q]="/2. Thus p and q are independent.

§ 1.7 Functions on a possibility space. Let U={a;, as,...,a, bea
possibility space. Let f be a function with domain U and range
R={ry, rs, ..., rsy. That is, f assigns to each element U a unique

element of R. If f assigns ry to a;, we write f(a;)=ry. We write
f=r; for the statement “‘the value of the function is ri.” This is a
statement relative to U, since its truth value is known when the
outcome a; is known. Hence it has a truth set which is a subset of U.
(See FMS Chapters II, III, or M4 Vol. II, Unit 1.)

1.7.1 DrrFintrioN. Let £ be a function with domain U and range R.
Assume that a measure has been assigned to U. For each ry in R
let wiry)=Pr[f=ry]. The weights w(ry) determine a probability
measure on the set R, called the induced measure for f. The weights
are called the induced weights.

We shall normally indicate the induced measure by giving both the
range values and the weights in the form:

£ { ry, ro, ..., l‘s}
w(ry), w(r), ..., Ww(rs)

Thus the induced weight of ry in R is the measure of the truth set
of f=r; in U.

1.7.2 ExampLiE. In Example 1.6.6 let f be the function which gives
the number of heads which turn up. The range of f is R={0, 1, 2}.
The Pr[f=0]=1/4, Pr{f=1]=1/5, and Pr{f=2]=1/s. Hence the range
and induced measure is:

¢ {0 1 2}'
Yg Yo Ma
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1.7.3 DzrinitioN. Let U be a possibility space, and f and g be two
functions with domain U, each having as range a set of numbers. The
function £+g is the function with domain U whick assigns to a; the
number £(a;) +g(a;). The function £-g is the function with domain U
which assigns to a; the number f(as)-g(as). For any number ¢ the
constant function ¢ is the function which assigns the number ¢ to every
element of U.

Let U be a possibility space for which a measure has been assigned.
Then if f and g are two numerical functions with domain U, f+g and
f. g will be functions with domain U, and as such have induced measures.
In general there is no simple connection between the induced measures
of these functions and the induced measure for f and g.

1.7.4 ExamprLe. In Example 1.6.6 let g be a function having the
value 1 if a head turns up on the first toss and 0 otherwise. Let h be
a function having the value 1 if a head turns up on the second toss
and 0 if a tail turns up. Then the range and induced measures for

g, h,g+h and g-h are
0 1
g:
1y 1y

b {o 1}
1y 1y

0 1 2
g+h: { }
1/4 1/2 1/4

1.7.5 DrriniTioN. Let f be a function defined on U. Lel p be a
statement relative to U having truth set P.  Assume that a measure m
has been assigned to U. Let £’ be the function f considered only on the
set P.  Then the induced measure for £ calculated from the conditional
measure given p s called the conditional induced measure for f
given p.

1.7.6 DEerINITION. Let £ and g be two functions defined on a space U
for which a probability measure has been assigned. Then f and g are
independent if, for any rx in the range of f and s; in the range of g,
the statements f=r; and g=s; are independent statements.

An equivalent way to state the condition for independence of two



