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Preface

This monograph is based on the script of a lecture series on the quantum
mechanics of classically chaotic systems given by the author at the University
of Marburg during the summer term 1995. The lectures were attended by
students with basic knowledge in quantum mechanics, including members of
the author’s own group working on microwave analogous experiments on
quantum chaotic questions.

When preparing the lectures the author became aware that a comprehensive
textbook, covering both the theoretical and the experimental aspects, was not
available. The present monograph is intended to fill this gap. ,

The basic concepts of the quantum mechanics of classically chaotic systems,
termed *quantum chaos’ for short, are easy to grasp by any student of physics.
The mathematical apparatus needed, however, often tends to obscure the
physical background. That is why the theoretical results will be illustrated by
real experimental or numerical data whenever possible.

Chapter I gives a short introduction on the essential ideas of semiclassical
quantum mechanics, which is illustrated by two examples taken from the
microwave billiards and the kicked rotator.

Chapter 2 treats the different types of billiard experiments. Methods to study
vibrating solids and liquids are presented. The main part of this chapter deals
with microwave techniques, as by far the most experiments have been per-
formed in microwave billiards. The chapter ends with a discussion of meso-
scopic billiards including quantum corrals.

Chapter 3 introduces random matrix theory. It was developed in the sixties,
and is treated in several reviews and monographs. Therefore only the funda-
mental concepts are discussed, such as level spacing distributions and spectral
correlation functions. The last part of the chapter introduces supersymmetry
techniques, which have become more and more important in recent years.

In Chapter 4 systems with periodic time dependences are discussed, with
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special emphasis on dynamical localization, i.e. the suppression of classical
chaos by quantization. Since dynamical localization is a special case of
Anderson localization, which is observed for electrons in disordered lattices,
the chapter includes a short discussion of the latter systems.

Chapter 5 deals with the analogy between the dynamics of the eigenvalues of
a chaotic system as a function of an external parameter and the dynamics of a
one-dimensional gas, a mode!l introduced by Pechukas and Yukawa. When
varying the parameter, the phases of the wave functions change as well. These
so-called geometrical phases, also called ‘Berry’s phases’, are treated in the last
section of this chapter.

In Chapter 6 scattering theory is introduced to describe the influence of
coupled antennas on the spectrum, with special emphasis on microwave
billiards. For depths and widths of the resonances Porter—Thomas distributions
are found, these have been well-known in nuclear physics for many years. The
chapter ends with a discussion of the fluctuations of scattering matrix elements,
known as Ericson fluctuations in nuclear physics, and as universal conductance
fluctuations in mesoscopic systems.

In Chapter 7 semiclassical quantum mechanics is developed. Starting with
the Feynman path integral for the quantum mechanical propagator, stationary
phase approximations are applied to obtain semiclassical expressions for the
propagator and the Green function. The main result of the chapter is the
Gutzwiller trace formula expressing the quantum mechanical spectrum in
terms of the classical periodic orbits.

In Chapter 8 several applications of periodic orbit theory are presented. It
starts with a discussion of Fourier transform techniques to extract the contribu-
tions of periodic orbits from the spectra. The semiclassical theory of spectral
rigidity establishes a link between periodic orbit and random matrix theory.
Subsequently resummation schemes are developed allowing the calculation of
quantum mechanical spectra from the periodic orbits under favourable condi-
tions. The chapter ends with a discussion of billiards on a metric with constant
negative curvature, and of the Selberg trace formula, the non-Euclidean equiva-
lent of the Gutzwiller trace formula.

From the very beginning, when starting the microwave experiments in the late
eighties, I have been supported and encouraged by many colleagues from
theory. Prof. S. GroBmann, Marburg, roused my interest in nonlinear dynamics.
In the following years Prof. B. Eckhardt, Marburg, and Prof. F. Haake, Essen,
have been my main interlocutors in theoretical problems. Moreover, [ want to
thank all my coworkers, especially J. Stein, with whom I started the experi-
ments, and U. Kuhl, my senior coworker. The experiments have been supported



Preface Xl

by the Sonderforschungsbereich ‘Nichtlineare Dynamik’ of the Deutsche
Forschungsgemeinschaft, both financially and scientifically. Here I want to
mention in particular the groups of Prof. T. Geisel, Gottingen, and Prof. A.
Richter, Darmstadt. The Fachbereich Physik at the University of Marburg has
provided me with the local support necessary to perform the experiments.

I further want to thank the authors and the publishers who gave permission
to reproduce figures from their publications. In addition most of the authors
have provided me with good copies of the figures. Some of the figures have
been prepared by U. Kuhl. My coworker M. Barth has cared for the regular
updating of our internal quantum chaos bibliography used for this monograph.
Finally I am indebted to my wife E.-B. Stéckmann for her critical reading of
the whole manuscript and stylistic corrections.

Hans-Jiirgen Stockmann
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Introduction

From the very beginning classical nonlinear dynamics has enjoyed much
popularity even among the noneducated public as is documented by numerous
articles in well-renowned magazines, including nonscientific papers. For its
nonclassical counterpart, the quantum mechanics of chaotic systems, termed in
short ‘quantum chaos’, the situation is completely different. It has always been
considered as a more or less mysterious topic, reserved to a small exclusive
circle of theoreticians. Whereas the applicability of classical nonlinear dy-
namics to daily life 1s comprehensible for a complete outsider, quantum chaos,
on the other hand, seems to be of no practical relevance at all. Moreover, in
classical nonlinear dynamics the theory is supported by numerous experiments,
mainly in hydrodynamics and laser physics, whereas quantum chaos at first
sight seems to be the exclusive domain of theoreticians. In the beginning the
only experimental contributions came from nuclear physics [Por65]. This
preponderance of theory seems to have suppressed any experimental effort for
nearly two decades. The situation gradually changed in the middle of the
eighties, since when numerous experiments have been performed. An introduc-
tory presentation also suited to the experimentalist with no or only little basic
knowledge is still missing.

It is the intention of this monograph to demonstrate that there is no reason to
be afraid of quantum chaos. The underlying ideas are very simple. It is
essentially the mathematical apparatus that makes things difficult and often
tends to obscure the physical background. Therefore the philosophy adopted in
this presentation is to illustrate theory by experimental results whenever
possible, which leads to a strong accentuation of billiard systems for which a
large number of experiments now exist. Consequently, results on microwave
billiards obtained by the author’s own group will be frequently represented.
This should not be misunderstood as an unappropriate preference given to their
own work. The bilhard, though being conceptually simple, nevertheless ex-
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hibits the full complexity of nonlinear dynamics, including its quantum mech-
anical aspects. Probably there is no essential aspect of quantum chaos which
cannot be found in chaotic billiards.

The nonexpert for whom this book is mainly written may ask whether
quantum chaos is really an interesting topic in its own right. After all, quantum
mechanics has now existed for more than 60 years and has probably become
the best tested physical theory ever conceived. Quantum mechanics can handle
not only the hydrogen atom which is classically integrable but also the
classically nonintegrable helium atom. We may even ask whether there is
anything like quantum chaos at all. The Schrddinger equation is a linear
equation leaving no room for chaos. The correspondence principle, on the other
hand, demands that in the semiclassical region, i.e. at length scales large
compared to the de Broglie wavelength, quantum mechanics continuously
develops into classical mechanics.

That 1s why there has even been a debate whether the term ‘quantum chaos’
should be used at all. In 1989 the leading scientists in the field came together to
discuss these questions at a summer school in Les Houches [Gia89]. The
proceedings are titled ‘chaos and quantum physics’ thus avoiding the dubious
term. Berry [Ber89] once again proposed the term ‘quantum chaology’, intro-
duced by him previously [Ber87]. This would obviously have been a much
better choice than ‘quantum chaos’, but was not generally accepted. In the
foilowing years the debate ceased. Today the term ‘quantum chaos’ is generally
understood to comprise all problems concerning the quantum mechanical
behaviour of classically chaotic systems. This view will also be adopted in this
book. For billiard experiments another aspect has to be considered. Most of
them are analogue experiments using the equivalence of the Helmholtz equa-
tion with the stationary Schrédinger equation. That is why the term ‘wave
chaos’ is sometimes preferred in this context. Most of the phenomena dis-
cussed in this book indeed apply to all waves and are not primarily of quantum
mechanical origin.

The problems with the proper definition of the term ‘quantum chaos’ have
their origin in the concept of the trajectory, which completely loses its
significance in quantum mechanics. Only in the semiclassical region do the
trajectories eventually reappear, an aspect of immense significance in the
context of semiclassical theories. For purposes of illustration, let us consider
the evolution of a classical system with N dynamical variables x, ..., xy
under the influence of an interaction. Typically the x, comprise all components
of the positions and the momenta of the particles. Consequently the number of
dynamical variables is N = 6 M for a three-dimensional M particle system.

Let x(0) = [x,(0), ..., xx(0)] be the vector of the dynamical variables at the
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time ¢ = 0. At any later time ¢ we may write x(f) as a function of the initial
conditions and the time as

x(f) = F[x(0), f]. (1.D
If the initial conditions are infinitesimally changed to
x1(0) = x(0) + §(0), (1.2)
then at a later time ¢ the dynamical variables develop according to
x1(0) = F[x(0) + §(0), ¢]. (1.3)

The distance §(f) = x,(¢) — x(t) between the two trajectories is obtained from
Egs. (1.1) and (1.3) in linear approximation as

§() = (EV)F[x(0), 1], (1.4)
where V is the gradient of F with respect to the initial values. Written in
components Eq. (1.4) reads

OF,
En(0) =D 5= En(0). (15)

The eigenvalues of the matrix M = (0F,/0x,,) determine the stability proper-
ties of the trajectory. If the moduli of all eigenvalues are smaller than one, the
trajectory is stable, and all deviations from the initial trajectory will rapidly
approach zero. If the modulus of at least one eigenvalue is larger than one, both
trajectories will exponentially depart from each other even for infinitesimally
small initial deviations &(0). Details can be found in every textbook on
nonlinear dynamics (see Refs. [Sch84, Ott93]).

In quantum mechanics this definition of chaos becomes obsolete, since the
uncertainty relation

ArAp =1 (1.6)

prevents a precise determination of the initial conditions. This can best be
illustrated for the propagation of a point-like particle in a box with infinitely
high walls. For obvious reasons these systems are called billiards. They will
accompany us throughout this book. For the quantum mechanical treatment
two steps are necessary. First the Schrodinger equation

h? Oy
—2mA¢ _ZﬁE (1.7)
has to be solved with the Dirichlet boundary condition
Yls =0, (1.8)

where S denotes the walls of the box. Stationary solutions of the Schrodinger
equation are obtained by separating the time dependence,

Yalx, 1) = P (x)e""". (1.9
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Insertion into Eq. (1.7) yields

(A+ E)pa(x) =0 (1.10)
where w,, and k, are connected via the dispersion relation
h
w,,:mki. (1.11)
Equation (1.10) 1s also obtained if we start with the wave equation
1 & )
A——=—— =0, 1.12
< c? ot v (1.12)

where ¢ is the wave velocity, and if we separate again the time dependence by
means of the ansatz (1.9). In contrast to the quadratic dispersion relation (1.11)
for the quantum mechanical case we now have the linear relation
w, = cky (1.13)

between w, and k,. It is exactly this correspondence between the stationary
Schrédinger equation and the stationary wave equation, also called the Helm-
holtz equation, which has been used in many billiard experiments to study
quantum chaotic problems using wave analogue systems (see Chapter 2).

As soon as the stationary solutions of the Schrodinger equation are known, a
wave packet can be constructed by a superposition of eigenfunctions,

P(x, £ = Z anPn(x)e 9. (1.14)

For a Gaussian shaped packet centred at a wave number k& and of width Ak the
coefficients a, are given by

(k=%
a,,—aexp[——z-( Ak )J (1.15)

where a is chosen in such a way that the total probability of finding the particle
in the packet is normalized to one. If the a, are known at time ¢ = 0, e.g. by a
measurement of the momentum with an uncertainty of Ap = AAk, the
quantum mechanical evolution of the packet can be calculated for any later
time with arbitrary precision. Moreover, to construct wave packets with a given
width, the sum in Eq. (1.14) can be restricted to a finite number of terms. Apart
from untypical exccptions, the resulting function is not periodic, since in
general the w, are not commensurable, but quasi-periodic. Thus the wave
packet will always reconstruct itself, possibly after a long period of time. The
exponential departure of neighbouring trajectories known from classical non-
linear dynamics has completely disappeared.

The wave properties of matter do not provoke an additional spreading of the
probability density as we might intuitively think. On the contrary, in systems
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where the classical probability density continuously diffuses with time, e.g. by
a random walk process, quantum mechanics tends to freeze the diffusion and to
localize the wave packet [Cas79]. This has been established in numerous
calculations and has even been demonstrated experimentally [Gal88, Bay89,
Mo0094]. The phenomenon of quantum mechanical localization will be dis-
cussed in detail in Chapter 4.

To demonstrate how the wave packet just constructed evolves with time, we
now take the simplest of all possible billiards, a particle in a one-dimensional
box with infinitely high walls. Taking the walls at the positions x = 0 and
x = [, the eigenfunctions of the system are given by

2
Ya(x) = \@sin kox, n=1273 ... (1.16)
with the wave numbers
k,=—. (1.17)

Insertion into Eq. (1.14) yields

. -\ 2
2 Ufky -k : — it
Pix, 1) = a\/:l; exp {—5< A ) } sink,xe . (1.18)

This equation holds for the propagation of both particle packets and
ordinary waves, provided that the respective dispersion relations (1.11) or
(1.13) are obeyed. The calculation is somewhat easier for ordinary waves.
Therefore this situation will now be considered by putting w, = ck,. For
particle waves the calculation follows exactly the same scheme. To simplify
the calculation it will be further assumed that the average momentum is
large compared to the width of the distribution, i.e. k¥ > Ak. Then the sum
can be extended from —oc to +oc, and we can apply the Poisson sum
relation

dsm= " g, (1.19)
where
g(n) = J ; f(nyer™ ™ dn (1.20)

is the Fourier transform of f(n). Application to Eq. (1.18) yields

: -\ 2
2 O~ [T U (k—k
= — — — : w2im- ctyk
Y(x, O a\/; E nJ‘xexpii 2( A ) Jsmkxe dk, (1.21)

m=—2
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where the integration variable n has been substituted by k = nm/l The
integration is easily carried out using the well-known relation

r exp[—(ak® + 2bk + ¢)] dk = \/gexp <éa: ~ c) (1.22)

—OC
for Gaussian integrals which also holds for complex values of a, b, ¢ provided
that Re(a) > 0. The result is

P = Y [P = ctm) = ¢l = x = ctyy1)], (1.23)
where
tm:t—m%{, (1.24)
¢
and
P(x) = 2a\/J—lt-Ak exp [sz — %(xAk)z} . (1.25)

Equation (1.23) allows a straightforward interpretation. It describes the propa-
gation of a Gaussian pulse with width Ax = 1/Ak and velocity ¢, passing to
and fro between the two walls and changing sign upon every reflection. For the
propagation of particle waves the situation is qualitatively similar, but now the
quadratic dispersion relation (1.11) leads to a spreading of the pulse with time
and a pulse width Ax(r) given by

1/4

Ax(1) = 317( [1 + <ﬁ(Anf)-t> } . (1.26)

For time ¢ = 0 we obtain AxAk =1 as for ordinary waves. This is just the
quantum mechanical uncertainty relation.

By means of the Poisson sum relation two different expressions for y(x, 1)
have been obtained. First, in Eq. (1.18), it is expressed in terms of a sum over
the eigenfunctions of the systems, second, in Eq. (1.23), it is written as a pulse
propagating with the velocity ¢ being periodically reflected at the walls. This
reciprocity, with the quantum mechanical spectrum on the one side and the
classical trajectories on the other, will become one of the main ingredients of
the semiclassical theory, in particular of the Gutzwiller trace formula. In the
special example presented here the applied procedure worked especially well,
since the set {£,} of eigenvalues was equidistant, leading to a perfect pulse
reconstruction ‘after every reflection. In the general case the pulse will be
destroyed after a small number of reflections, but pulse reconstructions are still
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possible. The correspondence between classical and quantum mechanics will
be demonstrated by two examples.

Figure 1.1 shows the propagation of a microwave pulse in a cavity in the
shape of a quarter stadium [Ste95]. The measuring technique will be described
in detail in Section 2.2.1. A circular wave is emitted from an antenna,
propagates through the billiard, and is eventually reflected by the walls, thereby
undergoing a change of sign (this can be seen especially well in Fig. 1.1(d) for
the reflection of the pulse at the top and the bottom walls). After a number of
additional reflections the pulse amplitude is distributed more or less equally

e) b))
Figure 1.1. Propagation of a microwave pulse in a microwave cavity in the shape of a
quarter stadium (length of the straight part / = 18 cm, radius » = 13.5 cm, height
h = 0.8 cm) for different times ¢/10~'% s: 0.36 (a), 1.60 (b), 2.90 (c), 3.80 (d), 5.63
(), 9.01 (), 10.21 (g), 12.0 (h), 14.18 (i), 19.09 (j) [Ste95] (Copyright 1995 by the
American Physical Society).
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over the billiard. But after some time the pulse suddenly reappears (see Fig.
1.1(f)). This is even more evident in Fig. 1.2 where the pulses are shown in a
three-dimensional representation for two snapshots corresponding to Figs.
1.1(a) and (f). This reconstruction has nothing to do with the quantum
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Figure 1.2. Three-dimensional view of the pulse propagation shown in Fig. 1.1 for two
times, corresponding to Figs. 1.1(a) and (f), respectively [Ste95] (Copyright 1995 by

the American Physical Society).



