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PREFACE

Spurred by the experimental project of creating quark-gluon plasma in ultra-
relativistic heavy ion collisions at the ‘Relativistic Heavy Ion Collider’(RHIC) and
‘Large Hadron Collider’ (LHC), being in construction at BNL and CERN respec-
tively, substantive progress has been made in recent years in the study of quark-
gluon transport theory and high temperature QCD. With the aim of introducing
the recent developments in this field to Chinese scholars, the Workshop on Finite
Temperature QCD and Quark-Gluon Transport Theory was held in April 1994 at
the Institute of Particle Physics, Hua-Zhong Normal University, Wuhan, China.

In this workshop, physicists from the United States, Germany, France, Japan,
and China gave lectures on the latest active topics in finite temperature QCD and
heavy ion collisions.

U. Heinz who is a pioneer in the study of transport theory for quarks and
gluons talked about the framework which allows for theoretical description of the
kinetics of quark-gluon plasma. He also reported on new insight into the formation
mechanism of strange particles during ultra-relativistic heavy ion collisions and the
interesting new details of the strangeness phase diagram.

R. D. Pisarski gave lectures on the possible appearance of disoriented chiral
condensates (DCC) from the “quenched” heavy ion collisions and how the position
and width of the effective mass of vector mesons are affected by temperature using
the theory of chiral symmetry.

Xin-Nian Wang reviewed on purterbative QCD-inspired model for multiple
parton production and parton equilibration in heavy ion collisions. He also dis-
cussed the effective treatment of soft interactions for which purterbative QCD can
not be applied.

Y. Fujimoto discussed the temperature dependent ultraviolet divergences and
infrared divergences in massless QED and QCD using dimensional regularization.

We are grateful to all the speakers for their nice lectures and well-prepared
manuscripts for the proceedings. Special thanks are extended to Uli Heinz for his

encouragement and great help in organizing this workshop.
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QUARK-GLUON TRANSPORT THEORY

ULRICH HEINZ

Institut fir Theoretische Physik, Universitdt Regensburyg,
D-93040 Regensburg, Germany

1. Introduction

For a period of nearly ten years now there has been an active experimental pro-
gramme at CERN and BNL for the study of ultra-relativistic nuclear collisions.
The goal of these experiments is to create very hot and dense nuclear matter in
the laboratory, and ultimately to achieve conditions under which the matter in the
collision zone makes a phase transition to a quark-gluon plasma (QGP). The exis-
tence of such a phase at sufficiently high energy density is predicted by quantum
chromodynamics and is a consequence of asymptotic freedom.

The quark-gluon plasma is defined to be a state in which quarks and gluons
are deconfined, i.e. can move around freely over large distances, and are in a state
of local thermal equilibrium. This implies that their momentum distributions are of
the Fermi or Bose type and thus can be described by only three thermodynamic pa-
rameters: the temperature T and two chemical potentials ug and p, {corresponding
to the two conserved quantum numbers of the strong interaction, baryon number
and strangeness).

That quarks and gluons are the relevant degrees of freedom at high energies
has been amply demonstrated in high energy ete™, pp, and pp collisions. What
is different in nuclear collisions is that the volume and density of the system may
be large enough for the quarks and gluons to rescatter many times and thereby
equilibrate, thus exhibiting collective features like color deconfinement, long-range
color conductivity, Debye screening and plasma oscillations. These are the specific
features we are hoping for in nuclear collisions, and I believe that many of us would
be disappointed if we could only prove the existence of quarks and gluons (rather
than hadrons) in the early stages of the collision and not convince ourselves in addi-
tion that they undergo significant rescattering and a large degree of thermalization,
resulting in collective quark-gluon dynamics.

In these lectures I will describe a framework which allows for a theoretlcal
description of the kinetics of a quark-gluon system and its approach to local ther-
modynamic equilibrium. This formalism aims at the dynamics of the very first,
pre-equilibrium stage in relativistic nuclear collisions. Their later evolution, includ-
ing hydrodynamic expansion and hadronization, will not be discussed here in detail,
but have been described at other occasions!~3. Here I will at the beginning only give
a short summary of the various stages of a heavy-ion collision, in order to establish
the general setting.



2. Dynamical Stages of a Nuclear Collision

High energy nuclear collisions proceed through a sequence of dynamical stages each
of which leaves certain experimental traces. In this section I present a short overview
before proceeding in the following section to a detailed discussion of the quark-gluon
kinetics in the early pre-equilibrium stage.

2.1. Primary Nucleon-Nucleon Collisions

The formation of the dense and hot interaction region is initiated by a sequence
of high energy collisions between the projectile and target nucleons. The nucleon-
nucleon cross section can be separated into two contributions: (a) A “soft” com-
ponent which produces secondaries with small to moderate (less than, say, 2 GeV)
transverse momenta; it is of non-perturbative character and cannot be reliably cal-
culated, but creates most of the multiplicity at c.m. energies below a few hundred
GeV. (b) A “hard” component which produces high-p, secondaries and can be cal-
culated with the methods of perturbative QCD; it becomes increasingly important
at higher c.m. energies and begins to dominate the production of secondaries at
collider energies (above, say, /s = 0.5 TeV). It is responsible for the production
of jets and minijets, hard direct photons, Drell-Yan dileptons, and of charmed par-
ticles, and dominates the spectra of these particles at large invariant masses and
transverse momenta (above a few GeV).

2.2. Parton Rescattering, Thermal and Chemscal Equilibration

At very high energies the penetrating nuclei can be considered as a stream of partons
with momentum distributions given by the nuclear structure functions. Secondaries
at central rapidity arise mostly from collisions between low-z partons from these
nuclei. Since at low z the parton structure is dominated by gluons and the (con-
siderably smaller) ¢ sea, while the valence quarks have larger = and thus populate
the forward and backward nuclear fragmentation regions, the secondaries at central
rapidity are initially mostly gluons. At very low z the gluon density in a nucleus
becomes very large; thus at high energies, in particular with large nuclei, the den-
sity of secondary gluons near central rapidity becomes very high, and they begin to
rescatter. )

This stage of the collision is described in a kinetic language*, by solving the
equations of motion for the partonic phase-space distribution functions with nuclear
structure functions as initial conditions®. The numerical implementation®® occurs
in the form of parton cascades with perturbative cross sections for parton scattering
as well as branching and recombination of off-shell partons. It is worth pointing
out a fundamental problem in the kinetic approach to equilibration in nuclear colli-
sions: for an easy description of the quark-gluon plasma phase one would hope for
asymptotic freedom to work and to cause a sufficient decrease of the effective strong
coupling constant at high temperature, such that the properties of this phase can
be described by perturbative methods. This is in fact the underlying spirit in most



existing kinetic approaches. On the other hand, if the effective coupling constant
were really very small, the particles in the plasma would cease to scatter and would
never have a chance to equilibrate. In order to be able to create a quark-gluon
plasma (i.e. a system of quarks, antiquarks and gluons in thermal equilibrium)
on the short time scales characteristic of heavy-ion collisions, we need strong (not
weak) interactions. This foils any hopes for a purely perturbative approach to the
quark-gluon plasma equation of state and to its dynamics. Although some nonper-
turbative methods have been developed for the discussion of static properties of a
quark-gluon plasma (e.g. its equation of state), much too little is still known about
their importance in a dynamical situation. Some interesting recent work on -the
chaotic dynamics’ of classical Yang-Mills fields reiterates the necessity for further
work in this direction. .

These cautionary remarks notwithstanding, intensive recent studies on the
basis of the existing numerical codes have shown that the stage of pre-equilibrium
dynamics is likely to have important experimental consequences. The semi-hard
collisions between the not yet thermalized secondary partons produce quarks and
antiquarks (in particular s3 pairs) from the initially dominating gluons, driving
the quark-gluon system towards chemical equilibrium®®-1°, They cause substantial
additional charm production®!!* and contribute measurably to the spectrum of
high-mass dileptons and direct photons!3!4 (depending on the rate of ¢4 production
from the initial gluons, this source may actually dominate the Drell-Yan rate up the
T region). They also produce the bulk of the final entropy of the collision region.

Large color octet cross sections and high-gluon densities in collisions between
big nuclei at large /s enhance the rate for gluon rescattering, and the gluonic
momentum distributions thermalize rapidly®®. For example, for Au-Au collisions
at RHIC it is estimated®® that the gluons reach a state of local thermal equilibrium
after less than 0.5 fm/c. The cross sections for ¢g (in particular s5 and cz) pair
production are considerably smaller. Chemical equilibration thus requires more
time (about 2-3 fm/c for light quarks and about 3-5 fm/¢ for strange quarks at
RHIC energies®®!%) and may not be completed if the partonic phase does not live
long enough before rehadronization. It is thus likely that the partonic rescattering
processes in heavy-ion collisions lead to a quark-gluon plasma which is in local
thermal, but only partial chemical equilibrium, with the strange sector in particular
not being fully saturated.

Still the quoted time scale for strangeness equilibration in the pre-equilibrium
parton system is by more than an order of magnitude faster than in a hadronic
environment'®: due to the larger production thresholds in hadronic strangeness
producing processes hy + hy — h% + h% (dictated by the larger constituent rather
than the smaller current strange quark mass), strangeness equilibration in, e.g.,
a hadron gas at temperatures of order 150-200 MeV takes at least a few ten to
hundred fm/c. Relative to conventional hadronic rates, strangeness equilibration is
thus much faster in a quark-gluon environment. This led to the idea to look for
enhanced strangeness production (relative to pp collisions) as an (indirect) signature

for an early dense quark-gluon phase!s.



2.3. Hydrodynamic Ezpansion and Cooling; Hadronization

After local equilibration the further evolution of the dense collision region is gov-
erned by the laws of relativistic hydrodynamics. These equations implement (lo-
caily) the conservation laws of energy-momentum, baryon number, strangeness,
and (in the absence of shocks) entropy. They are formulated in terms of six local
parameters, the temperature field T'(z), the chemical potentials ug(z) and u.(z),
and the hydrodynamic flow velocity »#(z) (with u¥u, = 1). Their solution needs
as input an equation of state which gives the energy density, baryon density and
strangeness density as a function of the thermodynamic variables. This equation of
state is hard to calculate: although at temperatures far above the deconfinement
transition a perturbative QCD approach may be valid, it is very hard to reach such
high temperatures experimentally (T' ~ €'/#!), and“in practice the system is never
in the perturbative regime. Numerical results from lattice QCD, on the other hand,
give information only for vanishing baryon density and thus cannot be directly used
for nuclear collisions which have nonzero baryon density at least in the nuclear
fragmentation regions. Therefore in the hydrodynamic stage one generally makes
extensive use of phenomenological equations of state. The most popular choice is
a free or perturbatively interacting gas of quarks and gluons subject to an exter-
nal bag pressure above the deconfinement transition, which is matched below the
transition to a hadron resonance gas which includes the measured hadron spectrum
with or without mean field interactions or a van-der-Waals-type excluded volume
correction.

Due to its internal pressure the plasma expands rapidly against the surround-
ing vacuum, cooling towards the rehadronization temperature. The expansion rate
increases with rising initial temperature and pressure, but the lifetime of the decon-
fined phase does so, too, albeit more slowly. Hence larger beam energies, leading
to higher initial energy densities, prolong the life of the QGP phase. An important
contribution to the QGP lifetime comes from the process of rehadronization: since
the entropy density in the QGP is much higher than that of a hadron resonance gas
(the effective number of degrees of freedom in a high temperature QGP is about
an order of magnitude larger than in a hadron gas below T = 150 MeV), and the
entropy cannot decrease during the expansion, rehadronization requires a large in-
crease in volume, and this takes time. From lattice QCD we know that the drop of
the entropy density occurs rather sharply near T, in the form of a second or weakly
first order phase transition'®. According to the lattice data the largest fraction of
the decrease in entropy density happens already in the deconfined phase: this im-
plies that the expanding system spends a large fraction of its lifetime near 7., as
a very slowly cooling non-perturbative quark-gluon phase slightly above 7. which
finally hadronizes rapidly at T..

Scattering and annihilation of the electrically charged quarks and antiquarks
in the QGP lead to thermal radiation of dileptons and photons!”. These particles
interact only electromagnetically and thus escape from the fireball without reinter-
action, providing a direct probe of its properties. Fusion of thermal gluons creates



more s3 pairs at a still large rate, driving the system even closer to chemical equilib-
rium. The hydrodynamic expansion leads to collective flow which adds to the local
thermal motion and will leave its imprint on the observed momentum spectra®!®,
After hadronization, the system may still spend some time in an interacting hadron
gas phase before decoupling. This phase can be probed'® by dileptons from the
decay of short-lived vector mesons (mostly the p).

2.4. Freeze-out and Decoupling of Hadrons

When the density becomes too low or the expansion rate too fast, local equilibrium
can no longer be maintained by collisions among the particles, and the system
freezes out. At decoupling the momentum distributions and abundance ratios of
the various hadron species are essentially frozen in, the only further modifications
being due to the (very important, but calculable) contributions from the decay of
unstable resonances.

Nearly all observed particles come from the stage of hadronic freeze-out.
Thermal equilibrium wipes out all memory of the earlier stages of the collision,
and the observed particle ratios, their y- and m -spectra, and their quantum sta-
tistical 2-particle correlations (which can be measured by Hanbury-Brown-Twiss
interferometry) provide direct information only about this late stage of the nuclear
collision. To extract from hadronic data information about earlier stages always
requires some method of extrapolating backwards in time and thus needs a the-
oretical model. No direct proof of QGP formation will ever be possible based on
hadronic data alone!

Hadronic freeze-out also provides a background to the direct electromagnetic
probes from the earlier stages. Electromagnetic decays of vector mesons (p, w,
¢) dominate the low-mass dilepton spectrum and thus cover the low-mass part
of the thermal QGP radiation. However, the vector meson decays into dileptons
are interesting in themselves: The J/y traces charm production, and its yield is
also sensitive to collective color screening effects in the early quark-gluon phase.
The ¢ meson probes enhanced strangeness production. The ratio of the p and
w peaks in the dilepton spectrum is sensitive to the lifetime of the hadron gas
phase before freeze-out!®. A really annoying background, however, comes from the
electromagnetic 7° and 7 decays which completely cover the thermal radiation of
direct photons and which must be reconstructed and subtracted with high efficiency
before the direct signal can be extracted.

3. Kinetic Theory

Kinetic theory describes the space-time evolution of the phase-space distribution
functions which describe the distribution of all the particles of the system in mo-
mentum and coordinate space. In classical systems the most important objects
of kinetic theory are the (dimensionless) 1-particle distribution functions f;(Z, p,t)



which give the probability of finding at time ¢ a particle of species 1 with momen-
tum § at point Z. In quantum mechanics, where for a single particle its momentum
and cootdinate can no longer be simultaneously determined, it is replaced by the
Wigner function, the object of quantum kinetic theory. The Wigner function can
only be interpreted as a probability when averaged over a sufficiently large phase-
space volume to guarantee classical behaviour of the ensemble. However, it still
allows to compute macroscopic observables in a very similar way as in the classical
case. We will discuss the essential elements of both approaches.

3.1. Classtcal Kinetic Theory

3.1.1. The Boltzmann-Nordheim- Vlasov kinetic equation

In the absence of collisions, all particles in a classical ensemble move along clas-
sical trajectories, and the probability f(Z,#,t) of finding at time ¢ a particle with
momentum p at-point £ does not change along these trajectories:
d 8 d¥ 5 dp o
—flE,pt)=|z+—-V+—-V z,p,t) =0. 1

Inserting the classical equations of motion

dz _, -

- =7, — =F=-VU, (2

dt . dt 2)
where U is some external or average mean field potential and F is the resulting
force on the particles, we obtain the Viasov equation

(%WLJ'V—VU-V,,)I(:E,;Z!,):O. (3)
The name of Vlasov is connected with the mean-field term ~ VU on the left hand
side.

Collisions between the particles lead to an additional change of the distribu-
tion function with time which can be added to the right hand side of Eq. (3) in the
form of a collision term. Since for n-body collisions the collision term involves the
n-body distribution function f(Z1,p1,...,Zn, Pn,t), the resulting equation does then
no longer close on the single-particle level, and an infinite hierarchy of coupled equa-
tions for the n-particle distributions (the BBGKY hierarchy??) results. To truncate
this hierarchy one can make the so-called Boltzmann approzimation which neglects
all genuine n-body correlations by assuming factorization of the n-particle distri-
bution into a product of 1-particle distributions. Including only 2-body collisions,
one thus obtains the Vlasov-Boltzmann equation

d*p
(27R)®

9 o - d
(a+6-V—VU-v,,) 1Emy =-4 [ v Z U H-FH. 8



The first term describes losses at momentum p due to collisions with particles of
momentum p; (into final states with momenta p" and p'}), while the second term
describes gains through the inverse scattering process. vy = | — ;| is the relative
velocity of the scattering particles (¥; = p;/m), and do/dQ is their differential cross
section in the center-of-momentum frame. All distribution functions on the right
hand side are evaluated at point (Z,t), e.g. f1 = f(Z,p1,t). The factor % in front of
the collision integral avoids double counting of collisions betwen identical particles.

For indistinguishable particles quantum mechanics creates unavoidable 2-
body correlations which are not correctly reproduced by the Boltzmann factoriza-
tion ansatz. For fermions, for example, the Pauli principle ensures that a kinemati-
cally allowed scattering process will not occur if the final momentum state is already
occupied. As first discovered by Nordheim?! and later independently by Uehling ad
Uhlenbeck??, this important quantum effect can be implemented even on the level
. of classical distribution functions by properly weighting the transition probabilities
in the collision integral with final state Pauli suppression factors for fermions and
stimulated emission enhancement factors for bosons. The right hand side of Eq. (4)
thus has to be replaced by

C@51) = -4 [ ot dtona 5 (TR0 )£ ) - PR E DO R

()
The kinetic equation with this form of the collision term is known as the Boltzmann-

Nordheim-Vlasov equation {sometimes also called Vlasov-Uehling-Uhlenbeck (VUU)
equation).

8.1.2. Generalization to relativistic kinematics

For problems with particles moving at relativistic velocities it is useful to bring the
kinetic equation into a manifestly covariant form. To this end one writes the 1-
particle distribution function as a function of coordinate and momentum 4-vectors
z*, p#, f(z,p). Since classical particles always have to satisfy the energy-momentum
relation E, = \/m*c* + p?c? (which is equivalent to the positive solution of the
mass-shell condition p? = p#p, = m?c?), we have to restrict the p-dependence of f
onto the mass- shell, by introducing a corresponding é-function into the integration
measure of momentum space:

d'p d®p
(@rh)S ~ (@nh)op

dP =2 0(p,) 6(p* — 2)

. (6)

po=E[c=4/F3+m3c?

The ¢-function ensures that only the positive-energy solutions are selected.
By multiplying with a factor E, Eq. (1) can be rewritten as

d E) d
m—_f(z,p) = [mz“af +mp af,, =0, (M



with dots denoting proper time derivatives d/dr. The coefficients in front of the
partial derivatives of f are given by the classical relativistic equations of motion:

mit =mu* =p*, mp* = F*, (8)

where F¥(z) is the 4-vector of the (external or mean field) force acting on the
particles, and the 4-velocity u” is normalized to 1, u#u,/c? = 1, due to the mass-
shell constraint.

Generalizing to an ensemble consisting of N different particle species : and
adding the collision terms, we obtain the relativistic form of the Boltzmann-Vlasov-
Nordheim equation:

(p,,(')" + F,{") (z)a;,‘) fi(z,p) = Ci(z,p), 9

with the Boltzmann-Nordheim collision term

Ci(z,p) = -3 g:l/ dP;dP. dP, [fifi(1 £ fi)(1 £ fi)Wiju
- ffkfl(l * fi)(1 £ fi)Wayis] - (10)
The relativistic inelastic transition probabilities are given by
Wis(pi» ps|pe, 1) = (2mR)® s 04515, ©) 64(p; + p; — P — p1) (11)

in terms of the differential inelastic cross section o;;_(s,©) for the process i(p) +
J(p;) — k(pi) + {(p). This cross section depends on the scattering angle © in the
center-of-momentum frame,

(0* — P})(Pru — Puu)

cos© =
(p—p;)?

, (12)

and on the invariant collision energy s = (p+p;)* = (pr+m)? (s is the square of the
energy in the center-of-momentum system). The é-function in Eq. (11) guarantees
energy-momentum conservation.

We see that to write down the left hand side of the Boltzmann-Vlasov equa-
tion one always needs the classical equations of motion for the particles in the
statistical ensemble. For quarks and gluons carrying color charge and interacting
via non-Abelian color fields, we will study them in the following subsection.

8.2. Classical Equations of Motion for Particles with Color and spin

Let us consider the quark color generators Q.= —ta= -—%)\a as Heisenberg opera-
tors satisfying Heisenberg’s equations of motion,
déa t A
=1x,0.). 13
Do =, Qu) (13)



If the theory is to be formulated in a relativistically invariant way, the time deriva-
tive in Eq. (13) should be with respect to proper time, and the “Hamiltonian” ¥ (a
Lorentz scalar) generating the proper-time evolution is to be taken as Schwinger’s
“quadratic Dirac Hamiltonian” %3

X = [(ihau + gA#)2 + %S“VFW - mzcz] . (14)

1
2m
Here A, = Ajt, and Fy, = Fj t, are 3 x 3 matrices in color, with Fj, = 3,4] —
B As+(g/¢) fasc AL AL, S¥ = (ih/4)[Vu, ] is the quark spin tensor, and (1/2)S#F .,
which reduces to & B in the particle’s rest frame, is the coupling of the spin to the
magnetic field. In the classical c-number limit® Eq. (13) leads to the equation of
motion?4? o 1
m dTu = “’i‘fabc(p“A; - Epupabzﬁsﬂ) Qc ’ (15)
where now Q, are the c-number (i.e. commuting) components of an 8-component
classical color vector é describing the coupling of a classical colored particle to the
eight color potentials A%. In Eq. (15) Fap = Jeapu F* is the dual field strength
tensor, and

1
§P =~ Py S 16
2me v (16)
relates the classical limit of the spin tensor to a spin 4-vector which is normalized
according p,S* = 0, S*S, = —§2. Eq. (15) conserves the SU(3) Casimir invariants,

t.e. the length Q°Q, of @ and the cubic invariant d,;,.Q*Q*Q° (dg. are the sym-
metric structure constants of SU(3)). Thus, the equation describes precession of
the classical color vector of the particle due to two effects: direct interaction (color
exchange) with an external color field A%, and coupling of the particle’s spin to the
color magnetic field. In the absence of particle spin this equation was derived by
Wong?$.

If the spin couples to the color magnetic field, it will similarly start to pre-
cess, and its equation of motion is given by the c-number limit of S* = %[){,S“],
namely?4%5

ds#
e
dr

= 2@ [Fes, + (P*S¥ — p*5*)(DyFug)ap®S*] . (17)
C

(mc)®
Here g
(Du)ab = apéab + EfambAzl (18)

is the covariant derivative in the presence of the color field A,(z}). In the absence
of inhomogeneities of the external field and of non-Abelian effects, this equation
reduces to the BMT equation®” for a spinning particle with Landé g-factor 2. Had
we started from the Yang-Mills Hamiltonian rather than the Dirac Hamiltonian, we

*This limit can be considered as the limit # — 0 while the dimension of the representation of the
generator simultaneously goes to infinity, such that the expectation value (h),/2}) remains finite.
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would have obtained?® for the spin-1 gluons an analogous equation, but for a g-factor
of 1. So with respect to color, we cannot distinguish in the structure of the equations
between quarks and gluons: by going to the classical limit (s.c. effectively to very
high-dimensional representations of the color generators) we lose the difference in
color between quarks and gluons. However, in their spin aspects they still remain
different: The Landé factor distinguishes quarks from gluons in their coupling to
the magnetic field. The spin aspects of the resulting classical kinetic theory have
not yet been completely worked out?®, so let us not further elaborate on this point.

Finally, we need an equation of motion for the momentum of the particle. It
is given by

dp*

_ 9 ~a v, 1 I axgf
m—— = CQ[Ft"p, — —(D*Fap)ap®S”]

= 2qe[rp, + SD4(s*FL)] . (19)

In the first term we recognize the (colored version of) the relativistic Lorentz force
law. The second term describes the possible gain in energy-momentum due to the
space-time variation of the spin magnetic interaction energy in an inhomogeneous
color magnetic field.

3.8. Classical Kinetic Equations for the Quark-Gluon Plasma

We can now write down a classical kinetic equation of the Vlasov type for the
single-particle phase space distribution for colored and spinning particles. Since the
particles’ momentum p*, the color Q,, and the spin S, all are dynamical variables
(i.e. evolve in time under the influence of an external or intrinsic mean color field),
phase space has to be spanned by the 20 coordinates z#, p#, Q% and S¥. Only in the
absence of classical color and spin it reduces to the conventional 8-dimensional phase
space (z*, p*); using for classical particles the mass-shell constraint between p° and
P, the latter is further reduced to the 7 well-known dimensions (Z, p,t). In our larger
20-dimensional phase space the integration measure is given by dX, dP dQ dS,
where dX, is the 3-dimensional surface element for some space-like hypersurface X,
the momentum-space measure is given by Eq. (6), and

dQ ~ §(Q°Q.—¢*) 6(dacQ°Q'Q° — &) °Q, (20)
dS ~ 6(p.S*)6(S*S, +s%) d'S. (21)

The various §-functions fix the normalization constraints for Q¢ and S¥, and the
proportionality constants can be conveniently chosen to normalize the measures in
color and spin space to unity.

The probability to find a classical particle at a given point in this phase space
is given by the 1-particle distribution function f(z,p,Q,S). It has to be a Lorentz
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scalar and gauge invariant. A gauge and Lorentz invariant expression for the time
evolution of f(z,p,Q,S) is given by

wd f 2a Of
= [ 2L+ mit gL+ me 30

dz#
C on the right hand side is a collision term describing short-range collision processes,
while ‘he various terms on the left are easily seen to describe long-range effects due
to the mean color fields in the system: Inserting Eqgs. (15, 19) and leaving all spin
effect aside (to keep the expressions manageable), we obtain the following equation
for the 1-particle distribution function of a plasma of classical colored particles®:

+S“

A =ceres. (@)

P[0, — 2QuF5 (2)9) — L fu AL (2)Q°05) / (2,0,Q) = C(=,2,Q).  (23)

If there are antiparticles involved, their distribution: function f(z, P, Q) obeys a

_ similar equation, with Q° replaced by —Q* (i.e. the second term changes sign).

These equations are closed by the Yang-Mills equation for the mean color
field A4,

(DuF*)a(z) = —yJ., . (z) | - (24)
& [#Qu (1(2,.Q) - f(z.5,Q) + G(z,7, Q)] dPdQ.

The color current on the right hand side of the Yang-Mills equation has been ex-
pressed in terms of moments of the distribution functions f, f, and G for the quarks,
antiquarks, and gluons, respectively.

Egs. (23, 24) together form the basis of a relativistic kinetic description for a
plasma of colored particles. The mean field terms on the left hand side of Eq. (23)
generalize those known from the usual Vlasov equation for electromagnetic plasmas;
however, in addition to the drift in momentum induced by the electric and magnetic
fields (non-relativistically the combination E + ¢ v/ cx B occurs as the coefficient of
the momentum derivative of f), there are now also drift terms in the color sector
of phase space: since the non-Abelian mean field carries color, interactions between
particles and the mean field generally lead to a color transfer.

The collision term on the right hand side of Eq. (23) couples the 1-particle
distribution function to two-body correlations. So actually Egs. (23, 24) generally do
not close; closure can be obtained, however, by factorizing the two-body correlations
into products of single-particle distribution.functions (Boltzmann approximation).
Without this approximation further kinetic equations are needed describing the
evolution of the 2-body distribution function which then again couples to 3-body
correlations, and so on. This BBGKY hierarchy of coupled equations has not been
constructed yet for the non-Abelian case; in principle it should emerge from the
quantum mechanical formulation of Section 4 in the classical limit, but this has so
far not been shown explicitly.
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8.4. Color Moment Equations

From the kinetic equations (23) one can construct several infinite hierarchies of mo-
ment equations, by forming moments involving powers of the color vector Q°, of the
momentum vector g*, or both. The color moment equations prove useful later when
comparing with the quantum mechanical formulation, since it turns out that the
lowest color moments of f(z,p,Q) can be identified with the clasgical limit of the
color components of the Wigner function. The two lowest moments of the momen-
tum operator formed with these color moments then lead to equations of motion for
macroscopic entities, namely the space-time densities of energy-momentum, baryon
number and color current, i.e. they yield a chromohydrodynamic description of the
plasma?®s. '

To derive the color moment equations, let us define the color singlet, octet, -
etc. distribution functions as the following moments of f(z,p,Q):

f@p) = [f(zr.Q) dQ,
fu@p) = [Qf(z,p.Q)dQ, (25)
fa(zp) = [QuQ f(z,p.Q)dQ, etc.

For these one obtains from Eq. (23), by taking appropriate color moments,

Pouf(@r) = W) flen) + [ Clen Q) 4@, (26)

P[0 + LameAD(@)] fol2,p) (27)
= LR (2) 8} fulz,p) + [ QuClz,p.Q) 4@,

P[0ubuctia + 2 (e fima + Bafome) A (@)] fea(z,P) (28)

= LpF(2) B ue,n) + [ Qu@IC(,p,Q) dQ, ete.

Classically, all these moments are independent. Quantum mechanically, the
color charges @, do not commute, and the color algebra between them allows in
the case of quarks (where Q, +» —fX,/2) to express?®?° the second color moment
fa in terms of f and f,:

K? h
fas = 8as Ff - 'z'dm fe . (29)
Hence for quarks the color hierarchy can be truncated by hand by imposing Eq. (29)
even on the classical level and rewriting Eq. (27) as

' h
Puds + 2 famed (@) + S demeF(2) 8} fel, )

2
= R A0+ [QCERQ Q. (30)



