PEARSON

B At ENHEENE 2R @

Introduction to Programming in Java
An Interdisciplinary Approach

£ s

Javﬁiﬂ‘l‘

—MEBFENFE

Robert Sedgewick ..
Kevin Wayne

ATERF HhRFE

AFUHNBRETESNELEMZT (BIR)

Introduction to Programming in Java

An Interdisciplinary Approach

Java F2F1&1t
RS R T

English reprint edition copyright © 2009 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: Introduction to Programming in Java: An Interdisciplinary Approach by
Robert Sedgewick, Kevin Wayne, Copyright © 2009
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A 55 IR 1 Pearson Education($% 4 808 H AR S H AR 4518 1 K2 AR A U R R AT -

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

R FREARALFMEERN (FEEDEEE. BIVFNITHRXF
P EAZHX) HEXT.

ST AU EER A F B LS EBF: 01-2007-5704 5

AP ENEH Pearson Education G543 E HARER) A AFRE, TEXERSHE.
MARETE, R4, FWREEIRBEIE: 010-62782989 13701121933

BB s B (CIP) #ifE

Java F#I7i% 1T = Introduction to Programming in Java: An Interdisciplinary Approach: FE3C/ () FE{E4ETT
(Sedgewick, R.), (3£) FHB (Wayne, K.) #. —FHIA, —Jb5: EHEAZHRM, 2009.5
CNFUENHAEENEZBEM RS GEERD)

ISBN 978-7-302-19800-0

[3 I Q@ L Java iBE —BFERT—R%SER— B —%X V. TP312

IR AE B TR CIP #E %+ (2009) 3 045366 5

RIRENH: 5%

HRREIT: WEHERFHRME o hb: JEREEEREEHRE A K
http:/ /www.tup.com.cn BF %: 100084
5 #: 010-62770175 B . 010-62786544

BIESIEHRS: 010-62776969, c-service@tup.tsinghua.edu.cn
B B & 1%: 010-62772015, zhiliang@tup.tsinghua.edu.cn

ED ORI & 35 REER

2T & NIRRT

£ 4T #: SAHERE

FF A 185X230 EN3Kk: 44.5

bR M 2009 FE 5 A% 1R Ep W 2009 % S A 1 KENR
En #. 1-3000

£ fir: 69.00 7T

EBWEASCEAE.. RO B, F0. RUEFHERENE, §5F%E AR HRBEER
PR, HEAWIE: 010-62770177 % 3103 FERES: 025056-01

iR B B

A 21 e, HRFERST. BRURGEENPRHEM#E. Tehox
MEEXMAAMES . EHERERERNWAL, EREERZFTIRERE. a%HE. &
HFFREBRRAAKEY, PRZIEREN. ARESSHENEMERRE, BT
INERFOHS 1) SEE T AN, BOH AR IEAE K et B [m e R A [Ah AR 0k

HEREHRAM 1996 EITY, SEINEZBRATGE, ZEIHRT “R%ETHEN
HEM CRERBO” F—RVIGIHES, ZRENEERRGAMF. BA 21 1, &
AL AR E GEEE B ERRSHYIE, LOARER L, SS9 REBHE, &
&N%HARﬁ —INBRAE M A o T FBNEE A T R E S B AR S A v LB 1

[E4h 22 S B L M, HRAE “RFEFTEN B G EIEZBM RS CGEERD”, L
WIEH . IRVIINNEE KPR A R B OARNE R RBA RN BREENER.
AT BATHER: EAMT ENLBH MINF EA, URBITC “ KT EHBERSIE 2
HM AR CEERRD” A EY, FEARRIMAENTE.

R SN) e

Preface

THE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-
metic;” now it is reading, writing, and computing. Learning to program is an
essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that writing a program is a natural, satisfying, and creative experience (not
an onerous task reserved for experts). We progressively introduce essential con-
cepts, embrace classic applications from applied mathematics and the sciences to
illustrate the concepts, and provide opportunities for students to write programs
to solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to Java after programming in the title to emphasize the idea that the book
is about fundamental concepts in programming, not Java per se. This book teaches
basic skills for computational problem-solving that are applicable in many modern
computing environments, and is a self-contained treatment intended for people
with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
where we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and com-
puting are intertwined in the modern world. While it is a CS1 textbook designed
for any first-year college student interested in mathematics, science, or engineer-
ing (including computer science), the book also can be used for self-study or as a
supplement in a course that integrates programming with another field.

iv

Coverage Thebook is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information readers need to build confidence in
writing programs at each level before moving to the next level. An essential feature
of our approach is to use example programs that solve intriguing problems, sup-
ported with exercises ranging from self-study drills to challenging problems that
call for creative solutions.

Basic elements include variables, assignment statements, built-in types of
data, flow of control (conditionals and loops), arrays, and input/output, including
graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
static methods, and then consider the implications of programming with func-
tions, including libraries of functions and recursion. We stress the fundamental
idea of dividing a program into components that can be independently debugged,
maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type (a set of values and a set of operations on them)
and an object (an entity that holds a data-type value) and their implementation
using Java’s class mechanism. We teach students how to use, create, and design data
types. Modularity, encapsulation, and other modern programming paradigms are
the central concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effec-
tive for modern applications. We provide an introduction to classical algorithms
for sorting and searching as well as fundamental data structures (including stacks,
queues, and symbol tables) and their application, emphasizing the use of the scien-
tific method to understand performance characteristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, N-body simulation, and the small-world

phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and
provide persuasive evidence of the critical role played by computation in modern
science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not library programming or programming in the large (which we
treat briefly in an appendix).

Use in the Curriculum This book is intended for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, prospective majors in any area of science and engineer-
ing will learn to program in a familiar context. Any student completing a course
based on this book will be well-prepared to apply their skills in later courses in sci-
ence and engineering and to recognize when further education in computer science
might be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
of science and engineering in the same course. We cover the material prescribed by
CS1, but our focus on applications brings life to the concepts and motivates stu-
dents to learn them. Our interdisciplinary approach exposes students to problems
in many different disciplines, helping them to more wisely choose a major.

Whatever the specific mechanism, the use of this book is best positioned early
i the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second, students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through a
lifetime, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

vi

Prerequisites This book is meant to be suitable for typical science and engi-
neering students in their first year of college. That is, we do not expect preparation

beyond what is typically required for other entry-level science and mathematics
courses.

Mathematical maturity is important. While we do not dwell on mathematical ma-
terial, we do refer to the mathematics curriculum that students have taken in high
school, including algebra, geometry, and trigonometry. Most students in our target
audience (those intending to major in the sciences and engineering) automatically
meet these requirements. Indeed, we take advantage of their familiarity with the
basic curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering students
bring with them a sense of fascination in the ability of scientific inquiry to help ex-
plain what goes on in nature. We leverage this predilection with examples of simple
programs that speak volumes about the natural world. We do not assume any spe-
cific knowledge beyond that provided by typical high school courses in mathemat-
ics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching pro-
gramming is our primary goal, so we assume no prior programming experience.
But writing a program to solve a new problem is a challenging intellectual task, so
students who have written numerous programs in high school can benefit from
taking an introductory programming course based on this book (just as students
who have written numerous essays in high school can benefit from an introductory
writing course in college). The book can support teaching students with varying
backgrounds because the applications appeal to both novices and experts alike.

Experience using a computer is also not necessary, but also is not at all a problem.
Every college student nowadays uses a computer regularly, to communicate with
friends and relatives, listen to music, process photos, and many other activities. The
realization that they can harness the power of their own computer in interesting
and important ways is an exciting and lasting lesson for most students.

In summary, virtually all students in science and engineering are prepared to take a
course based on this book as a part of their first-semester curriculum.

Goals What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the computing
environment and approach that he or she wants to use. A physics professor might
expect some students to design a program over the weekend to run a simulation; an
engineering professor might expect other students to be using a particular package
to numerically solve differential equations; or a computer science professor might
expect knowledge of the details of a particular programming environment. Is it
realistic to meet such diverse expectations? Should there be a different introductory
course for each set of students? Colleges and universities have been wrestling with
such questions since computers came into widespread use in the latter part of the
20th century. Our answer to them is found in this common introductory treatment
of programming, which is analogous to commonly accepted introductory courses
in mathematics, physics, biology, and chemistry. An Introduction to Programming
strives to provide the basic preparation needed by all students in science and en-
gineering, while sending the clear message that there is much more to understand
about computer science than programming. Instructors teaching students who
have studied from this book can expect that they have the knowledge and experi-
ence necessary to enable them to adapt to new computational environments and to
effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to ac-
complish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate,
and use other computational tools. Students interested in computer science will be
well-prepared to pursue that interest; students in science and engineering will be
ready to integrate computation into their studies.

vii

viii

Booksite An extensive amount of information that supplements this text may
be found on the web at

http://www.cs.princeton.edu/IntroProgramming

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With a
few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any website, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups
with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, which are based on exercises from the book but contain much
more detail. Each programming assignment is intended to teach a relevant concept
in the context of an interesting application while presenting an inviting and engag-
ing challenge to each student. The progression of assignments embodies our ap-
proach to teaching programming. The booksite fully specifies all the assignments
and provides detailed, structured information to help students complete them in
the allotted time, including descriptions of suggested approaches and outlines for
what should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

For casual readers (including instructors, teaching assistants, and students!),
the booksite is a resource for accessing all manner of extra information associated
with the book’s content. All of the booksite content provides web links and other
routes to pursue more information about the topic under consideration. There is
far more information accessible than any individual could fully digest, but our goal
is to provide enough to whet any reader’s appetite for more information about the
book’s content.

Acknowledgements This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them
all here. Special thanks are due to Anne Rogers for helping to start the ball rolling;
to Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explain-
ing data abstraction; and to Lisa Worthington, for being the first to truly relish
the challenge of teaching this material to first-year students. We also gratefully ac-
knowledge the efforts of /dev/126 (the summer students who have contributed
so much of the content); the faculty, graduate students, and teaching staff who
have dedicated themselves to teaching this material over the past 15 years here at
Princeton; and the thousands of undergraduates who have dedicated themselves to
learning it.

ix

- Contents

Preface.
Elements of Programming. 3

1.1 Your First Program 4

1.2 Built-in Types of Data 14

1.3 Conditionals and Loops 46

1.4 Arrays 86

1.5 Input and Output 120

1.6 Case Study: Random Web Surfer 162
Functions and Modules 183

2.1 Static Methods 184

2.2 Libraries and Clients 218

2.3 Recursion 254

2.4 Case Study: Percolation 286
Object-Oriented Programming . . N Y

3.1 Data Types 316

3.2 Creating Data Types 370

3.3 Designing Data Types 416

3.4 Case Study: N-body Simulation 456
Algorithms and Data Structures 471

4.1 Performance 472

4.2 Sorting and Searching 510

4.3 Stacks and Queues 550

4.4 Symbol Tables 608

4.5 Case Study: Small World 650

Chapter One

1.1 Your First Program

1.2 Built-in Typesof Data.
1.3 Conditionals and Loops.
14 Arrays.
1.5 Inputand Output

1.6 Case Study: Random Web Surfer. 162

UR GOAL IN THIS CHAPTER IS to convince you that writing a program is easier than

writing a piece of text, such as a paragraph or essay. Writing prose is difficult:
we spend many years in school to learn how to do it. By contrast, just a few building
blocks suffice to enable us to write programs that can help solve all sorts of fascinat-
ing, but otherwise unapproachable, problems. In this chapter, we take you through
these building blocks, get you started on programming in Java, and study a variety
of interesting programs. You will be able to express yourself (by writing programs)
within just a few weeks. Like the ability to write prose, the ability to program is a
lifetime skill that you can continually refine well into the future.

In this book, you will learn the Java programming language. This task will be
much easier for you than, for example, learning a foreign language. Indeed, pro-
gramming languages are characterized by no more than a few dozen vocabulary
words and rules of grammar. Much of the material that we cover in this book could
be expressed in the C or C++ languages, or any of several other modern program-
ming languages. But we describe everything specifically in Java so that you can get
started creating and running programs right away. On the one hand, we will focus
on learning to program, as opposed to learning details about Java. On the other
hand, part of the challenge of programming is knowing which details are relevant
in a given situation. Java is widely used, so learning to program in this language will
enable you to write programs on many computers (your own, for example). Also,
learning to program in Java will make it easy for you learn other languages, includ-
ing lower-level languages such as C and specialized languages such as MATLAB.

Elements of Programming

1.1 Your First Program

IN THIS SECTION, OUR PLAN IS to lead you into the world of Java programming by tak-
ing you through the basic steps required to get a simple program running. The Java
system is a collection of applications, not unlike many of the other applications
that you are accustomed to using (such

as your word processor, email program, ;| gelio,World
and internet browser). As with any ap- 1.1.2 Using a command-line argument . .
plication, you need to be sure that Java
is properly installed on your computer. It
comes preloaded on many computers, or
you can download it easily. You also need a text editor and a terminal application.
Your first task is to find the instructions for installing such a Java programming
environment on your computer by visiting

Programs in this section

http://www.cs.princeton.edu/IntroProgramming

We refer to this site as the booksite. It contains an extensive amount of supplemen-
tary information about the material in this book for your reference and use. You
will find it useful to have your browser open to this site while programming.

Programming in Java To introduce you to developing Java programs, we
break the process down into three steps. To program in Java, you need to:

* Create a program by typing it into a file named, say, MyCode. java.
+ Compile it by typing javac MyCode. java in a terminal window.
* Run (or execute) it by typing java MyCode in the terminal window.

In the first step, you start with a blank screen and end with a sequence of typed
characters on the screen, just as when you write an email message or a paper. Pro-
grammers use the term code to refer to program text and the term coding to refer
to the act of creating and editing the code. In the second step, you use a system ap-
plication that compiles your program (translates it into a form more suitable for the
computer) and puts the result in a file named MyCode . class. In the third step, you
transfer control of the computer from the system to your program (which returns
control back to the system when finished). Many systems have several different
ways to create, compile, and execute programs. We choose the sequence described
here because it is the simplest to describe and use for simple programs.

1.1 Your First Program

Creating a program. A Java program is nothing more than a sequence of charac-
ters, like a paragraph or a poem, stored in a file with a . java extension. To create
one, therefore, you need only define that sequence of characters, in the same way
as you do for email or any other computer application. You can use any text editor
for this task, or you can use one of the more sophisticated program development
environments described on the booksite. Such environments are overkill for the
sorts of programs we consider in this book, but they are not difficult to use, have
many useful features, and are widely used by professionals.

Compiling a program. At first, it might seem that Java is designed to be best un-
derstood by the computer. To the contrary, the language is designed to be best un-
derstood by the programmer (that’s you). The computer’s language is far more
primitive than Java. A compiler is an application that translates a program from the
Java language to a language more suitable for executing on the computer. The com-
piler takes a file with a . java extension as input (your program) and produces a
file with the same name but with a . class extension (the computer-language ver-
sion). To use your Java compiler, type in a terminal window the javac command
followed by the file name of the program you want to compile.

Executing a program. Once you compile the program, you can run it. This is the
exciting part, where your program takes control of your computer (within the con-
straints of what the Java system allows). It is perhaps more accurate to say that your
computer follows your instructions. It is even more accurate to say that a part of
the Java system known as the Java Virtual Machine (the JVM, for short) directs your
computer to follow your instructions. To use the JVM to execute your program,
type the java command followed by the program name in a terminal window.

use any text editor to type javac HelloWorld.java type java HelloWorld
create your program to compile your program to execute your program

| | |

editor [~HelloWorld. java —| compiler [~HelloWor1d.class—{ JVM |—"Hello, World"

T ! T

your program computer-language output
(a text file) version of your program

Developing a Java program

Elements of Programming

Hello, World

Program 1.1.1

public class HelloWorld

{
public static void main(String[] args)
{
System.out.print("Hello, World");
System.out.printin();
}
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first

program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). The result in this case is that the
program prints a message in the terminal window (the third line).

i

% javac HellowWorld.java
% java HelloWorld
Hello, World

PROGRAM 1.1.1 1S AN EXAMPLE OF a complete Java program. Its name is He1loWor1d,
which means that its code resides in a file named He11oWor1d. java (by convention
in Java). The program’s sole action is to print a message back to the terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: ProGram 1.1.1 consists of a single
class named He11oWor1d that has a single method named main(). This method uses
two other methods named System.out.print() and System.out.print1n() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until SEction 2.1, where we learn about
classes that define multiple methods, all of our classes will have this same structure.
For the time being, you can think of “class” as meaning “program.”

The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

