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PREFACE

THE present book has grown out of the series of lectures given by
the author to final honours B.Sc. mathematics students at Birkbeck
College, London. The purpose of the course has been, not so much
to instruct in the detailed tedium of actual calculation, but rather
to give an understanding of the basic principles upon which such
analyses rest.

Some existing books on numerical analysis lay much stress upon
the detailed form in which a given procedure is to be laid out; it has
been my experience that such concentration upon actual numbers
obscures the underlying mathematical basis upon which the work
rests, and so such tabulations are almost entirely absent from this
book. Where they are given, as in Chapter 7, they illustrate the
sort of behaviour which will be encountered in a calculation rather
than any detailed form of layout.

Were these didactic points the sole reason there would be little
justification for a new book on computation; a far more important
consideration lies in the growth, during the past decade, of the
science and art of programming for an automatic digital calculator.
The classical methods of hand calculation are, to a greater or less
extent, unsuitable for the modern machines, and only by having a
thorough knowledge of the underlying mathematical principles, is
the programmer likely to make effective use of the new tools.

At Birkbeck College Computational Laboratory the teaching of
numerical methods has been accompanied by the actual use of an
automatic calculator, and demonstrations of such things as differ-
encing and the solution of differential equations have been carried
out by the machine and not by the student. Perhaps not unnatur-
ally, this has proved more popular than the old method.

A book of this kind must always owe much to the work of previous
authors; it is pleasant to acknowledge the help which the author
derived from Freeman’s ®Actuarial Mathematics’ and from the
classical ‘Calculus of Observations’ of Whittaker and Robinson,
both of which were practically the only available works during the
1930°s. In more recent times the paper on ‘Difference and Associ-
ated Operators’ by W. G. Bickley may be mentioned as having
particular influence.



PREFACE

Finally it gives me particular pleasure to acknowledge the help of
my wife both in making the book more readable than might other-
wise have been the case, and also, in collaboration with J. P. Cleave,
B.Sc., for checking the examples given in Chapter 7.

A.D.B.
Fenny Compton
November 1954

AUTHOR’S NOTE

Advantage has been taken of the need for a second edition to
correct small errors which were present in the earlier version, and
the author wishes to express his thanks to reviewers and others who
drew his attention to these. :
A.D.B.
Fenny Compton
February 1957
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B 1
THE NATURE AND PURPOSE OF
NUMERICAL ANALYSIS

1. H1sTORY

ALTHOUGH numerical analysis is considered by some to be a subject
of recent origin and development this is not, in fact, so. Dealing, as
it does, with the derivation of results in the form of numbers, the
numerical analyst is really the lineal descendant of the first caveman
who enumerated the number of his wives by putting them into
one : one correspondence with the fingers of his hand.

Even in its more modern aspects the subject is antique; thus a
primary activity of the scientists of Babylon was the construction of
mathematical tables. An example is extant, dating from about
2000 B.c., which contains on a tablet the squares of the numbers
1-60. Another tablet records the eclipses going back to 747 ».c., so
that astronomical calculation formed a part of the activity of
these early numerical analysts.

The ancient Egyptians, too, were energetic numerical analysts.
They constructed tables whereby complex fractions could be decom-
posed into the sum of simpler forms with unit denominators, and
invented the method of false position (see Chapter 9, section 9.3) for
the solution of non-linear algebraic equations.

Passing to the Greek mathematicians we find Archimedes, in about
220 B.c., approxxmatmg the value of  and describing it as less than
3% but greater than 34, Heron the elder, in about 100 B.c., made use

of the iterative process: /2 ~ ;-(xn +— )which is usually ascribed to

Newton, and the Pythagorean school considered the summation of
the series (1 42 4 3 .. .). Diophantus, about A.p. 250, apart from
his better known work on indeterminate equations, was responsible
for a process for the arithmetical solution of quadratic equations.
The Hindus were the creators of our modern arithmetic notation
—usually called Arabic—and devised the method of chcckmg the
correctness of an arithmetic calculation known as © casting out nines’.
Mohammed ibn Musa Al-Khowarizmi was the first Arab arith-
metician and was responsible, around A.p. 820, for the systematiza-
tion of computatzonal processes. He gave the value r = 62832/20000
and was active in the preparation of astronomical tables. Abul Wefa
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‘NATURE AND PURPOSE OF NUMERICAL ANALYSIS

(A.D. 960) devised a method for the computation of tables of sines
and gave the value of sin (}°) correct to nine decimal places; he also
used the fangent and calculated a table of this function.

Jumping to the seventeenth century, it is interesting to note that
Napier’s first table of logarithms was produced before the use of
‘exponents was current, and that his ‘logarithm’ differs from any in
current use since:

Naperian log x = 107 log, (107/x).

In 1614 Napier published his Mirifici logarithmorum canonis de-
seriptio and, posthumously, his Mirifici logarithmorum canonis constructio
in 1619. Briggs, only slightly later in 1624, produced his Arithmetica
logarithmica, which contains the logarithms, to 14 places of the num-
bers 1-20,000 and 90,000-100,000. Vlacq produced, in 1628, a table
which is still fundamental of the 14-place logarithms of the numbers
1-100,000. The first authoritative publication of the logarithms of
trigonometric functions was made at about the same time (1620), by
Gunter, who invented the words ‘ cosine’ and ‘ cotangent’, and was
responsible for the so-called ‘Guntet’s chain’.

In the nineteenth century there occurred one of the triumphs of
numerical analysis, the simultaneous prediction by Adams and le
Verrier in 1845, of the existence and position of the planet Neptune.
This century saw also the rise and development of automatic calcu-
lating machinery, from the crude desk multiplier of Thomas de
Colmar to the almost unmodified Brunsviga of the present day, the
Hollerith punched card census calculator, and the difference and
analytical engines of Charles Babbage.

Not until the end of the 1930’s did the fully automatic calculators
begin to come into use, and since the late 1940’s there has been a
revolution and renaissance in numerical analysis. New methods
have been developed and problems which could not previously have
been contemplated, even for a life’s work, are now solved in hours.
It is perhaps dangerous to quote examples, but outstanding achieve-
ments are the calculation of 7 and ¢ to more than 2000 decimals,
which took, on the E.N.I.A.C., only about 12 h. The demonstra-
tion of the primeness of the Mersenne number 214 — 1 on §.W.4.C.
in 13 min. 25 sec., may also be cited as a noteworthy achievement.

1.2 THE TOOLS OF ANALYSIS (HAND)
From the classical standpoint of the individual numerical analyst
the tools of computation are:

(1) Tables of formulae (3) A desk calculator
(2) Tables of function values (4) Pencil, paper and rubber



TOOLS OF ANALYSIS (HAND)

Few investigations are of such a fundamental nature that they make

no use of existing mathematical knowledge; probably the most com-

mon table of formulae in use is a list of integrals. Four standard

works Juay be mentioned:

1 PEIRGE, B.O., ‘A short table of integrals,” Ginn, Boston (1929)

(2) Dwicnr, H. B ‘Tables of integrals and other mathematical
data,’ Macmillan, New York (1934)

(3) oE Haan, D. B., ‘Nouvelles tables d’intégrales définies, re-
printed Stechert, New York (1939)

(4) © Interpolation and allied tables,” H.M. Stationery Office (1956)

The first two volumes are chiefly concerned with indefinite integrals,

and the third exclusively with definite integrals. The last booklet

contains most of the useful formulae for interpolation.

Tables of function values are almost too numerous to mention. For
4- or 5-figure accuracy there are the classical:

Jannke-EMDE, ‘Tafeln héherer Funktionen,’ Teubner (4th edn.),
Leipzig (1948)

EmpE, ‘Tafeln elementarer Funktionen,” Teubner, Leipzig (1940)
which, besides giving numerical values, contain useful graphs and
formulae. Other moderate accuracy collections are:

‘Mathematical Tables from the Handbook of Chemistry and
Physics,” Chemical Rubber Publishing Co. Cleveland (1946)

Dark, J. B, ‘Five-figure Tables of Mathematical Functions,’
Arnold, London (1937)

Dwienr, H. B., ‘Mathematical Tables,” McGraw Hill, New York
(1941)

More accurate tables (6 or more decimal digits) are: .

‘Chambers’s Seven-figure Mathematical Tables,” Chambers,
London (1937)

‘Chambers’s Six-figure Mathematical Tables’ (2 vols.) (Ed
Comrie) London (1948-9)

‘Barlow’s Tables of Squares, Cubes and Reciprocals’ (Ed. Comrie)
Spon (1941) -

For more specialist tables reference can be made to the monu-
mental:

FLETCHER, A., MILLER, J. C. P., and Rosennzap, L., ‘Index of
Mathematical Tables,” Scientific Computing Service (1946)
Unfortunately this work is now out of print and, to some extent, out
of date. It may be supplemented by reference to ‘Mathematical
Tables and other Aids to Computation’ (M.T.4.C.) which main-
tains a cumulative description of new tables.
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NATURE AND PURPOSE OF NUMERICAL ANALYSIS

Numerous desk calculators are now available but none can be
said to possess such excellence as to satisfy all felt wants and to out-
shine the others. Our experience recommends the Brunsviga and
Madas machines in the hand-operated range, and the Marchant,
Madas and Mercedes-Euclid amongst those electrically opérated.
We shall not attempt any description of the means of using these
machines, since a short time with an experienced operator and the
machine will do more than many pages of words in this direction.

Regarding pencil and paper, we may remark that foolscap paper
ruled with feint } in. squares seems convenient for most general
purposes. Pencils should be soft, B is suitable, and the rubber should
not be one degraded by age and use!

1.3 THE TOOLS OF ANALYSIS (AUTOMATIG)

It is hoped that amongst the readers of this book there will be many
who have access to one of the automatic digital calculators which
become daily more easily available. To these fortunates we would
address the following words: do not throw aside the classical tools
described in section 1.2. Few problems are of such a nature as to be
immediately suitable for an automatic machine and the well-tried
aids will almost always be necessary during the period of problem
preparation.

Fortunately most of the available automatic machines have
‘codes’ which are very similar, so that an operator used to one
~ machine can readily apply himself to another. Nevertheless the
efficient use of a particular machine will only result from a detailed
knowledge of its mathematical structure, and this should always be
acquired at the earliest possible moment.

1.4 PREGISION, AGCCURACY AND ERRORS

In planning a calculation the three factors detailed in the heading
must always be considered. First, in any calculation using data ob-
tained by physical measurement, the inherent precision of the data
itself must be examined. If no figures for experimental errors are
presented and these are not easily obtainable, a knowledge of the
experimental technique may give a clue. Measurements of length
are rarely accurate to better than 110 per cent, measurements of
weight often attain 1/10,000 per cent. Electrical measurements are
frequently of precision as low as 5 per cent; These circumstances
should be taken into account at the planning stage, and a rough
working rule is to calculate to two places more than those given by
the data.



PRECISION, ACCURACY AND ERRORS

The accuracy of the calculation (excluding errors of the careless
type) will depend on the numerical process involved, Additions and
subtractions neither increase nor decrease the precision of the data;
multiplications and divisions, however, lead to round off procedures
and thus to an overall decrease in accuracy. Hand calculations are
seldom of such length as to cause trouble from the growth of round
off errors, but with automatic calculators the situation is different.
Thus a typical matrix inversion may lead to over 10,000 multiplica-
tions, and this, in turn, to a rounding error which has a probable
value of the order of 100 units in the last place.

Errors are of two main types, mathematical and human. The
former may result from the use of approximations, which are inevit-
able consequences of the use of discrete processes to represent con-
tinuous ones. The latter class of error should be avoidable, at least
in the long run, by the provision of adequate checks.

In manual calculation it has long been a platitude that a person
should never check his own work and that, if possible, the same
method should not be used. This has tended to become forgotten in
connection with the use of automatic digital calculators, and it is
frequently suggested that because the machine has produced the
same answer twice in succession it must be correct. Unfortunately
most machines suffer at times from ‘pattern sensitivity’, that is they
will work with complete accuracy on all numbers except one. Under
these circumstances the same wrong answer can be produced as often
as required, and the only valid check is a completely different com-
puting routine.

In practice it is often possible to check the results of a long series of
calculations by some completely external means, such as differencing
(see Chapter 3, section 3.2), or, alternatively, from a knowledge of
the observations with which the calculations are intended to agree.
When this is not so (with an automatic digital calculator) a good plan
is to repeat the calculation after an interval of several days, since
few, if any, of these machines survive such a period without adjust-
ment, and adjustment almost always varies any pattern sensitivity
which may be present.

Formulae may be used in different ways and with differing re-
sultant accuracy. Thus, we may calculate

sin 8 ==0 — 6%/6 + 65/120 (141

in two ways. In the first the terms are formed separately and then
added. In this event the round off may be equal to 1-5 in the last
place. On the other hand, by forming: :

[(Thet? — $)6% + 110 e (1.4.2)
5



NATURE AND PURPOSE OF NUMERICAL ANALYSIS

the greatest error will be 0-5 in the last place, This example is also
instructive in that it illustrates an efficient means of calculating a
polynomial. Thus a direct calculation of equation 1.4.1 involves two
divisions, four multiplications and two additions or subtractions,
whereas in equation 1.4.2 the multiplications are reduced to three.

Considerations such as those mentioned above should always
precede any numerical calculation and nught be multlphed indefi-
nitely. Some pointers will be given at appropriate places in the text,
but pencil and paper analysis can only be learned by long practice
and, in our experience, no two expert analysts agree upon the best
detailed layout for any particular case. For this reason the details
will be left to the reader and such numerical examples as appear
are illustrations of such things as convergcnce, rather than of com-
putational layout.

REFERENCE

W Bootn, A. D., and Bootn, K. H. V., ‘Automatic Digital Calculators,’ p. 14,
Butterworths, London, 2nd edn. (1956)



2
TABULATIONS AND DIFFERENCES

2.1 THE NATURE OF TABULATED FUNCTIONS

THe differential calculus had its origin in a consideration of the
mode of variation of a function y = f(x) with the augument . In the

process of defining the differential coefficient, g—i, it is nécessary to

consider the limit of a finite difference ratio:

S(x 4+ 8x) — flx)[(x + 82) — =«
as dx — 0. When a function is represented by a set of numerical
values contained in a table, it is natural to consider the analogues of
the differentials dy and dx which can be deduced immediately from
the tabular values. Suppose that a function u, is defined by a table:

Uy

u
U
Uy

"M.—-O\h

= -

Uun

Then, corresponding to dx, we have (1 — 0), (2 — 1), (n — {n — 1})
all of which are equal to unity. And corresponding to dy we have the
differences (u; — 1), (43 — %), . . . (g — thy—,).

Since the interval of tabulation (i.c. 1 in this case) is by no means
always unity, it is customary to represent this by the symbol 4(x),
and in a like manner: .y — ty, is represented by 4 (uy,).

Now just as it is possible to proceed to differential coefficients
higher than the first, so can the differences of a tabulated function
be extended thus:

() Af 4+ def

E 4 Aug=1—u, Ay=Auy — Q=g — 200, + 18, A%y =A%y ~A%uy= u, — Stg+ 3uy — 44,
Ly dwy=wy—uy du=Luy~Atsy =24 — 2y — v, A%y =A%y— A%, = u,— 30y + Sug —u,
2ty Auy=1t4y—5, ete, ete.

8|8, dug=1,—u,

4wy dug=1uy—u,
6luy Aug=u,—u,

‘The differences on the first line, namely, du,, 42u,, 4%, etc. are
referred to as leading differences.
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TABULATIONS AND DIFFERENCES

2.2 SOME ACTUAL TABLES

Before proceeding to a consideration of the uses to which differences
may be put, it is instructive to consider some existing mathematical
tables and their relation to differences.

As a first example consider the following section of a typical
schoolboy’s 4-place logarithm table:

Proportional  Paris
z o 1 2 3 4 5 6 7 8 9 |1 2 38 45 6 789

0000 0043 0086 0128 0170
0414 0453 0492 0531 0569
0792 0828 0864 0889 0934

0212 0253 0294 0334 0374
0607 0845 0682 0719 0765
: etc.

4 81217 21 26 29 33 37
4 8111519 23 26 80 34
ete.

This is a typical example of what may be called a ‘two dimensional’
table in that, to each lattice point of a two dimensional co-ordinate
system is assigned a functional value. Such tables are usually only
available for the most elementary functions and at a very low level
of precision. First consider the differences of the function at the
finest interval available in the table, namely -001.

x | S 4 a1
100 0000 0043 0
101 0043 0043 -1
102 0086 0042 0
103 0128 0042

104 0170

It is intuitively clear that, since the first difference is sensibly
constant, a linear relationship exists between the function and its
argument in the intervals between tabulated values. It follows that,
at any rate approximately, if the value of f{x) at a non-tabulated
value is required no great error will result from assuming:

S(xo + 8) = flxg) + 8.[f(x) — fm)]
Sxo + 8) = flxo) + 8.4 f(x0)]

where & is a proportion of the interval (x, — x,), and in any case the
error will not exceed unity [i.e. the value of 42{ f{#x,)}]. On the other
hand, consider the table of ‘proportional parts’. These purport to
contain the values of 84[( f{x,)] efe. for 8 = -0001, -0002 . . . -0009.
But since:

or"

A7(100) = 0043
Af(109) = 0040

it is evident that the proportional parts can only be approximate and

8



SOME ACTUAL TABLES

that the value at 8 = -0009 should be 39 for x = 1009 and 36 for
x = 1099. More honest table makers would mark these proportional
parts to indicate that they are not accurate over the whole range of
argument which they cover.

Next consider the differences over a larger interval (01).

x S 4 4 4
10 0000 0414 — 0036 + 0005
11 0414 0378 — 0031 + 0006
12 0792 0347 — 0025 + 0003
13 1139 0322 — 0022

14 1461 0300

15 1761

It is seen that the first differences are no longer constant so that an
attempt to evaluate f{103), say, by the ‘proportional part’ technique
would not be justified (it would lead to -3 x 0414 = 0124 which
does not.agree at all well with the actual value 0128), and a more
sophisticated technique would be needed to make full use of the
4-place tabular accuracy.

The virtue of the simple table, described above, lies in the ease
with which it may be used; when more accurate values are required,
however, the two dimensional layout is no longer possible. Thus, to
continue further the logarithm table to an accuracy of 7 decimal
places, and to have direct reading of a 7-place argument would
require a volume of some 2000 pages!

To overcome this difficulty, the onus of calculation of intermediate
values is placed upon the user, and the interval of tabulation is so
chosen as to make possible the linear interpolation process discussed
above. (Linear interpolation is the technical term for the ‘pro-
portional part’ technique just examined). An example from a 7-
decimal place logarithm tabulation is the following:

X log x Diff.
268 11 428 3130 162
12 3292 162
13 3454 162
14 3616 162
15 3778 162
16 3940 162
17 . 4102 162
18 4264 162
19 4426 162
20 4588 162

B 9



TABULATIONS AND DIFFERENCES

At a later position in the compendium from which this example is
taken is to be found a table of proportional differences corresponding
to all differences encountered in the main table, which in this case
range from 434 to 43. A section of this table is:

Dif.( Pop. 1 2 3 4 5 6 1 8 9

162 16 32 49 65 81 97 113 130 146
163 16 33 49 65 82 98 114 130 147
164 16 33 49 66 82 98 115 131 148
165 17 33 50 66 83 99 116 132 149

Thus, to find log 2-68143, the user of the table has to form the sum:

log 2:68 143 = log 26814 4 -3 x -000 0162
= +428 3616 -+ -000 0049
= -428 3665

If greater precision is required, and careful consideration is needed
to justify it in any particular case, the function difference must be
actually multiplied by the proportional part. Thus:

log 2-681 432 = -428 3616 4 -32 x -000 0162
= -428 3668

It should be noticed that when the ultimate accuracy is required, as
in this case, there is a possibility of an error of 3; 1 in the last place
due to round off in the original table construction. This effect is
eliminated in the so-called ‘critical tables’ in which the range of »
for which f{x) has a given value is specified. These tables are, how-
ever, comparatively rare and are unlikely to come the way of the
student.

Our final example is taken from a recent® table of high precision
(15 decimal places) for the trigonometrical function sin x°

x° sin x 82

17-60 0-30236 98907 50445 — 92 10714
<61 . +30253 62492 99766 92 15781
«62 +30270 25986 33306 92 20848 -
-63 30286 89387 45998 . 92 25916
+64 +30303 52696 32774 92 30982

17-65 | 0-30320 15912 88568 — 92 36048
<66 ete,

It will be noticed that, to this precision, no attempt could be made
to subdivide at an interval sufficiently small to make possible linear

10



SOME ACTUAL TABLES

interpolation. Instead second central differences (see section 3.4
infra) have been given and these make possible a reasonable inter-
polation process (that of Everett, section 3.4, equation 3.4.8) for the
evaluation of intermediate values.

REFERENCE

) Table of Sines and Cosines to 15 decimal places at hundredths of a degree.
U.S. Nat. Bur. Stand. Applied Mathematics Series. No. 5, Washington (1949)
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