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Preface

The theory of almost periodic functions was first developed by the
Danish mathematician H. Bohr during 1925-1926. Then Bohr’s work was
substantially extended by S. Bochner, H. Weyl, A. Besicovitch,
J. Favard, J. von Neumann, V.V. Stepanov, N.N. Bogolyubov, and oth-
ers. Generalization of the classical theory of almost periodic functions has
been taken in several directions. One direction is the broader study of
functions of almost periodic type. Related this is the study of ergodic-
ity. It shows that the ergodicity plays an important part in the theories of
function spectrum, semigroup of bounded linear operators, and dynamical
systems. The purpose of this book is to develop a theory of almost pe-
riodic type functions and ergodicity with applications—in particular, to
our interest—in the theory of differential equations, functional differen-
tial equations and abstract evolution equations. The author selects these
topics because there have been many (excellent) books on almost periodic
functions and relatively, few books on almost periodic type and ergodicity.
The author also wishes to reflect new results in the book during recent
years.

The book consists of four chapters. In the first chapter, we present a
basic theory of four almost periodic type functions. Section 1.1 is about
almost periodic functions. To make the reader easily learn the almost
periodicity, we first discuss it in scalar case. After studying a classical
theory for this case, we generalize it to finite dimensional vector-valued
case, and finally, to Banach-valued (including Hilbert-valued) situation.
Section 1.2 is about asymptotically almost periodic functions. Since the
reader has some understanding of the almost periodicity for the case of
both scalar-valued and vector-valued after studying Section 1.1, we de-
velop the theory of asymptotically almost periodic functions mainly in an
abstract vector-valued case. Similar development is applied to the theory
of weakly almost periodic functions in Section 1.3. In Section 1.4 we show
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the approximation theorem for almost periodic functions and the unique
decomposition theorem for weakly almost periodic functions. In Section
1.5, we investigate the theory of pseudo almost periodic functions. Until
now, we have presented all of the almost periodic type functions we will
devote to in the book. In Section 1.6 we apply pseudo almost periodic
functions to the converse problems of the Fourier expansion. In the last
section of the chapter, Section 1.7, we investigate almost periodic type
sequences. This kind of the sequences proved to be useful in differential
and difference equations.

In Chapter two, we apply the theory developed in the previous chap-
ter to differential equations. Section 2.1 and Section 2.2 deal with the
applications in ordinary and partial differential equations, respectively.
In Section 2.3, we first develop a theory of means and introversions and
then apply it to some nonlinear differential equations. We discuss the
regularity and exponential dichotomy in Section 2.4. In Section 2.5, we
deal with equations with piecewisc constant argument. In Section 2.6, we
solve equations with unbounded inhomogeneous parts. Finally in Section
2.7, we study exponential dichotomy in terms of topological equivalence
and structural stability.

Chapter three is about ergodicity and abstract differential equations. We
discuss the ergodicity and regularity in the first section. In Section 3.2 we
apply the ergodicity to some nonlinear differential equations. For the needs
of further applications of almost periodic type functions, we present some
basic knowledge of semigroups of bounded linear operators in Section 3.3.
Then in Section 3.4 we discuss delay differential equations. In Section
3.5 we develop a theory of function spectrum. In the last section of the
chapter, Section 3.6, we solve abstract Cauchy problems and study asymp-
totical stability of the solutions.

The last chapter of the book is Chapter four. In the chapter, we will
apply the theory of ergodicity to averaging methods. For this purpose, we
first investigate further properties of an ergodic function in Section 4.1.
Then we apply the theory to deal with the quantitative aspect of averaging
methods in Section 4.2. In Section 4.3 we present some results on critical
theory of some system. Then we deal with the qualitative aspect of aver-
aging methods in Section 4.4. In the last section of the chapter, Section
4.5, we apply the averaging method to functional differential equations
and its discrete analogue.

To read the book, we assume the reader has some basic knowledge of
Banach space and Hilbert space from Functional Analysis, some knowledge
of Ordinary Differential Equations such as existence and unique theorems.
Except these, the book is basically self-contained.
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Chapter 1

Almost periodic type
functions

In this chapter we will investigate four function spaces. The four spaces
have some common properties. Because of this, they all have similar
applications in many areas. In particular, to our interest in this book,
they have many applications in the theory of differential equations. At
the same time, we will see that they also have substantial differences. We
have to characterize them in quite different ways. This also leads them to
different applications.

1.1 Almost periodic functions

In this section, we present some classical results on almost periodic func-
tions. First we concentrate numerical almost periodic functions on R. To
apply these functions to some differential equations, we then investigate
functions almost periodic in ¢ € R and uniform on compact subsets of
n-dimensional complex space. Finally we briefly introduce Banach value
almost periodic functions.

1.1.1 Numerical almost periodic functions

Throughout the book, R denotes the real line, C denotes the set of com-
plex numbers, and C(R) denotes the set of all bounded, complex-valued,
continuous functions on R. Define the norm for each f € C(R) by ||f| =
supseg | f(t)], then C(R) becomes a Banach space. A function space F
is called C*-algebra if F is a Banach space and is closed under function
multiplication and conjugation. C(R) is obviously a C*-algebra.
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A trigonometric polynomial S is a function of the form

S(t) = Z Ckei)\kt

k=1

where A\ € R and ¢, € C. The functions ce** are periodic. However,

the sum c;e*1 + €2 will not be periodic if the ratio of A\; to Az is not
rational. Thus, a trigonometric polynomial may not be periodic. From
the modern point of view, the class of periodic functions on R is not
particularly nice because it does not form a linear space. To overcome
this, we seek a class of functions with better structural property and also
having properties similar to that of periodic functions. The class we are
seeking is now defined in the following

Definition 1.1 A function f € C(R) is said to be almost periodic if for
every € > 0 there exists a trigonometric polynomial S, such that

f = Sell <
Denote by AP(R) the set of all such functions.

From the definition above, one sees that AP(R) is the completion
in C(R) of trigonometric polynomials. It is well known that by Fejér
sums, any continuous, periodic function is a uniform limit of trigonometric
polynomials. So, all continuous, periodic functions are in AP(R) (the
reader may also easily get the same conclusion by Theorem 1.10 (v) below).
Thus, AP(R) is a quite natural object to study.

Since the set of all trigonometric polynomials is closed under function
multiplication and conjugation, so is AP(R).

For a function f on R, the translate of f by s € R is the function
R, f such that Rsf(t) = f(t + s) for all t € R. We call a function set
F translation invariant if {Rsf : f € F, s € R} C F. Note that the
set of all trigonometric polynomials is translation invariant and for any f,
g € C(R),

1 Rsf — Ragll < {If —gll-
The completion AP(R) is also translation invariant.

Combining the discussions in the last two paragraphs we have the
following theorem on the structural property of AP(R).

Theorem 1.2 AP(R) is a translation invariant, C*-subalgebra of C(R)
containing the constant functions.
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By Thcorem 1.2, if f, g € AP(R) then the following functions

f:tgv fg7 f7 C’fv Rsf

are all in AP(R), where ¢ is a constant and s € R. Is the derivative f’
also in AP(R)? The following two corollaries show that uniform continuity
characterizes the almost periodicity of f'.

Corollary 1.3 An f € AP(R) is uniformly continuous on R.

Proof. Note that any function ¢, exp{iAx-} is uniformly continuous on
R and so is the sum of a finite such functions. For ¢ > 0 there is a
trigonometric polynomial S, such that || f — S¢{| < /3. It follows from the
uniform continuity of S, that there exists a § > 0 such that for any z;,
T2 € R, |z — @3] < 6, one has |Sc(z1) — Se(x2)] < €/3. So

[f (1) = f(z2)] < [f(@1) = Se(z1)|+]Se(@1) = Se(@2) | +1Se(z2) — f(2)] < €.
Thus f is uniformly continuous. O

Corollary 1.4 Let f € AP(R) be such that its derivative function f' is
uniformly continuous on R. Then f' € AP(R).

Proof. Let f = fi1 + if2, where f; and f, are real functions. Consider
the functions

gon(t):n[f<t+%>—f(t)}, n=1,2,---
Since
enl)=n|f(t+1) = fO)] =f(t+ %) +if e+ 2)
(0 <O, < 1),
the uniform continuity of f’ implies that for € > 0 there is an ng such that
llen = fll <e (2 no).

The functions ¢,, are almost periodic and consequently f’ is almost peri-
odic. O

It is well known that any continuous, periodic function f with periodic
2w associates a Fourier series

ft) ~ D Age™r,

k=—o00
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where

k 1 2w .
wp = L A= — [ f(t)emrtdt, k=0,+1,42,--.
W 2w 0

f also satisfies Parseval’s equality:

oo

o [iswpa = > A

k=—o0

The function f is completely defined by its Fourier series. More precisely,
the following so-called uniqueness theorem is true: Distinct periodic func-
tions have distinct Fourier series.

Next, we show that AP(R) has a similar theory of Fourier Analysis.
In order to introduce the Fourier series of f € AP(R), we need first to
establish the following result.

Theorem 1.5 If f € AP(R) then the limit

T+a

ezists uniformly with respect to a € R. Furthermore, the limit is indepen-
dent of a.

Proof. We first show the theorem in the case that f is a trigonometric
polynomial. Let

n
f(t) = S(t) =cg + Z Ckei)‘kt,
k=1
where A\, #£0, k =1,2,---,n. It follows that
etre(T+a) _ pirg(=T+a)

S(t)dt =
T / rie Wt =cot kzl * 20T

T+a
t)dt — ¢
2T /T+a

lim T/T+a fit)d

T—oo 2 T+a

ng

This implies that

uniformly with respect to a € R.
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If f is an arbitrary function in AP(R) then for € > 0 there is a trigono-
metric polynomial S such that

If =Sl < 5 (L1)

We can find a number Ty such that when Ty, T3 > Tp, we have

o | "S- L / S(t)dt

< = a € R). 1.2
2Tl —-T14a To+a 3 ( ) ( )

It follows from (1.1) and (1.2) that when 77, 15 > Tp, , we have

1 Ti+a d 1 Ty+a d
— f{t)dt — —/ t)dt
2T1 /—T1+a ( ) 2T2 Tota f( )

1 Ti+a
| NIRRT

1 Ti+a T +a
+ | / S(t)dt — — /
2T1 -T1+a ( ) T2+a

b / BT ) — St < e,

215 J _Ty4a

Let us show that

T+a
lim T/ f(t)dt = lim —/ f(t)de. (1.3)

T—c0 2 T+a Tooo 2T

Thus the limit is independent of a. We may assume, without loss of
generality, that @ > 0. Then

1 T+a 1 T
2T /—T+a f(tyde - 2T /—T fe)de
1 T+a —T+a

| rwa- [ (] <

2T
So (1.3) holds. The proof is complete. O

2alf]]
2T

Definition 1.6 Let f € C(R). If the limit

Jim o [ 0

exists then we call the limit mean of f and denote it by M(f).
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In practice, we often write a mcan as

M(f(:))  or  M(f(¥).

It follows from Theorem 1.5 that M (Rsf) = M(f) for all f € AP(R) and
s € R. That is, M is a translation invariant mean on AP(R). It is easy
to see that M is indeed a positive, bounded linear functional on AP(R)
with ||M|| = 1.

If f € AP(R), then the mean M(f) can also be calculated by

M(f) = lim =
Jm g ) st
We leave the proof to the reader, or refer to Section 3.1.

For A € R and f € AP(R) since the function fe™* is in AP(R), the
mean exists for this function. We write

a(\) = M(fe™™).

Let Ay, Ao, -+, A, bein R and let ¢y, ¢, - -+, ¢, be any complex numbers.
Counsider the following function
2)

Lemma 1.7 The function ¢ assumes a minimum value for c,, = a(Ag),
k=1, 2, -+, nand

n
(P(Clyc2,‘ ot ,Cn) =M ( f - cheW\k
k=1

i AP < MOSP). (1.4)

Proof. An elementary calculation shows that

. ; 1 ifk=m
Ak | ,—1Am- — )
M{e™ - e7m) { 0 if k # m.

n 2
M (f—che“k' )

= M(|f] )—Z%M “’“)—Z%M fe®)

k=1

Therefore
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+ i i ckémM(e”"“' -e‘“"”')

k=1m=1
= M(IfP?) -3 aa) = 3 cra(he) + 3 lexl?
k=1 k=1 k=1

n

= MO+ Y e — el = Y le) P

k=1 k=1

Consequently, the function ¢ takes the minimum value for ¢ = a(Ag) and
the value is M (|f]?) — 37_; la(Ax)|?. One has (1.4) because ¢ > 0. The
proof is complete. O

The following two theorems are of special important in the theory
of almost periodic functions. Because of them, Fourier Analysis can be
carried out on AP(R). The proofs all depend on Lemma 1.7.

Theorem 1.8 Let f € AP(R). Then there exists at most a countable
set of X's for which a(\) # 0.

Proof. By (1.4) it follows that there can exist only a finite number of
A’s for which |a(A)| > 1. Similarly one shows that for any n there exists
only a finite numbers of X's for which

1 1
—— < la(N)} < —.
—— <la(l < -

Hence, the set of A's for which a(\) # 0 is a countable union of finite sets,
and consequently it is countable. O

For a function f € AP(R), the set

Freq(f) = {A € R: a(}) # 0}

is called the frequency set of f. Members of Freq(f) are called the Fourier
exponents of f and a(\)’s are called the Fourier coeflicients of f. By
theorem 1.8, Freq(f) is countable. Let Freq(f) = {Ax} and Ay = a(Ax).
Thus f can associate a Fourier series:

f(t) ~ Z Akei/\kt.
k=1

Theorem 1.9 If f € AP(R) then Parseval’s equality

[= o]

> 1Akl® = M) (1.5)

k=1
holds.
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2 R

Proof. By inequality (1.4) for any n one has

S A4 < M),

k=1

This shows that

oo
AP < M{IFP).
k=1
Let S be any trigonometric polynomial. Set S* = 0 if none of the
exponents of f occurs among the Fourier exponents of S, and S*(t) =
S Age™ ! the summation being extended over those ks for which A is
a Fourier exponent common to the functions f and S.
Since f is almost periodic, there is a sequence of trigonometric poly-
nomials {S,} such that
1
=Sl < —=.
17 =Sl < 7=
Then we have
M(|f = 5af%) <

S

Applying Lemma 1.7 we have
M(F - 83 < M{ISf - 5.5 <
But
M(f = ShH) = MO = 1A,
k

where the sum is extended over those ks for which Ay is a Fourier exponent
of S,,. Hence )
MOSP) < S 1AkP +
k

with the same conventions regarding the summation. Furthermore, we
shall have that

MO < 3 |Ad? +
k=1

and since n is arbitrarily large, we obtain
M(f1H) <D0 1Al
k=1

The proof is complete., O



