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Preface

This book is an outgrowth of lectures given on several occasions at Chalmers
University of Technology and Goéteborg University during the last ten years.
As opposed to most introductory books on complex analysis, this one as-
sumes that the reader has previous knowledge of basic real analysis. This
makes it possible to follow a rather quick route through the most fundamen-
tal material on the subject in order to move ahead to reach some classical
highlights (such as Fatou theorems and some Nevanlinna theory), as well
as some more recent topics (for example, the corona theorem and the H!-
BMO duality) within the time frame of a one-semester course. Sections 3
and 4 in Chapter 2, Sections 5 and 6 in Chapter 3, Section 3 in Chapter 5,
and Section 4 in Chapter 7 were not contained in my original lecture notes
and therefore might be considered special topics. In addition, they are
completely independent and can be omitted with no loss of continuity.
The order of the topics in the exposition coincides to a large degree
with historical developments. The first five chapters essentially deal with
theory developed in the nineteenth century, whereas the remaining chapters
contain material from the early twentieth century up to the 1980s.
Choosing methods of presentation and proofs is a delicate task. My aim
has been to point out connections with real analysis and harmonic anal-
ysis, while at the same time treating classical complex function theory. I
also have tried to present some general tools that can be of use in other
areas of analysis. Whereas these various aims sometimes can be incom-
patible, at times the scope of the book imposes some natural restrictions.
For example, Runge’s theorem is proved by the “Hahn-Banach method,”
partly because it is probably the simplest way to do so, but also because it
is a technique that every student in analysis should become familiar with.
However, a constructive proof is outlined as an exercise. Complex anal-
ysis is one of the origins of harmonic analysis, and several results in the
latter subject have forerunners in complex analysis. Fatou’s theorem in
Chapter 6 is proved using standard harmonic analysis, in particular using
the weak-type estimate for the Hardy-Littlewood maximal function. How-
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ever, most standard tools from harmonic analysis are beyond the scope of
this book, and therefore, the LP-boundedness of the Hilbert transform and
the HP-space theory, for instance, are treated with complex analytic meth-
ods. Carleson’s inequality is proved by an elementary argument due to B.
Berndtsson, rather than using the LP-estimate for the maximal function,
and Carleson’s interpolation theorem is proved using the beautiful and ex-
plicit construction of the interpolating function due to P. Jones from the
1980s. However, a proof based on the Jy-equation is indicated in an exer-
cise.

Necessary prerequisites for the reader are basic courses in integration
theory and functional analysis. In the text, I sometimes refer to distribution
theory, but this is merely for illustration and can be skipped over with no
serious loss of understanding. The reader whose memory of an elementary
(undergraduate) course in complex analysis is not so strong is advised to
consult an appropriate text for supplementary reading.

As usual, the exercises can be divided into two categories: those that
merely test the reader’s understanding of or shed light on definitions and
theorems (these are sometimes interposed in the text) and those that ask
the reader to apply the theory or to develop it further. I think that for
optimal results a good deal of the time reserved for the study of this subject
should be devoted to grappling with the exercises. The exercises follow the
approximate order of topics in the corresponding chapters, and thus, the
degree of difficulty can vary greatly. For some of the exercises, I have
supplied hints and answers.

At the end of each chapter, I have included references to the main results,
usually to some more encyclopedic treatment of the subject in question, but
sometimes to original papers. If references do not always appear, this is
solely for the sake of expediency and does not imply any claim of origi-
nality on my part. My contribution consists mainly in the disposition and
adaptation of some material and proofs, previously found only in papers
or encyclopedic texts addressed to experts, into a form that hopefully will
be accessible to students.

Finally, I would like to take this opportunity to express my apprecia-
tion to all of the students and colleagues who have pointed out errors and
obscurities in various earlier versions of the manuscript and made valu-
able suggestions for improvements. For their help with the final version,
I would like to thank in particular Lars Alexandersson, Bo Berndtsson,
Hasse Carlsson, Niklas Lindholm, and Jeffrey Steif.

Goteborg, Sweden Mats Andersson
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Preliminaries

§1. Notation

Throughout this book the letters §2 and K always will denote open and
compact sets, respectively, in R%, and w will denote a bounded open set
with (when necessary) piecewise C*! boundary 8w, which is always supposed
to be positively oriented; i.e., one has w on the left-hand side when passing
along dw. The notation w CC 2 means that the closure of w is a compact
subset of Q, and d(K, E) denotes the distance between the sets K and
E. Moreover, D(a,r) is the open disk with center at a and radius r,
and U denotes the unit disk, i.e., U = D(0,1), and T is its boundary
08U = {z; |z| = 1}. The closure of a set E € R? is denoted by E and its
interior is denoted by int E.

The space of k times (real) differentiable (complex valued) functions in
2 is denoted by C*(€Q2) (however, we write C(S2) rather than C°(2)) and
C>(2) = NC*(QN). Moreover, C*(Q) is the subspace of functions in C*(£2)
whose derivatives up to the kth order have continuous extensions to §2, and
Ck(Q) is the subspace of functions in C*(2) that have compact support
in Q. Lebesgue measure in R? is denoted by d\, whereas do denotes arc
length along curves. We use the standard abbreviation a.e. for “almost
every(where).” We also use u.c. for “uniformly on compact sets.” If f,¢
are functions, then “f = O(¢) when £ — a” means that f/¢ is bounded
in a neighborhood of a and “f = o(¢) when £ — @” means that f/¢ — 0
when z — a. Sometimes we also use the notation f < g, which means that
[ is less than or equal to some constant times g. Moreover, f ~ g stands
for f<gand f > g.

We will use standard facts from basic courses in integration theory and
functional analysis. Sometimes we also refer to distribution theory (mainly
in remarks), but these comments are meant merely for illustration and
always can be passed over with no loss of continuity. In the next section
we have assembled some facts that will be used frequently in the text. In the
first chapters we refer to them explicitly but later on often only implicitly.
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Almost all necessary background material can be found in [F] or [Rul],
combined with a basic calculus book. For the facts in itemm B below see,
e.g., [H6)], which also serves as a general reference on distribution theory.

§2. Some Facts
A. Some facts from calculus. If f is a map from § into R? that is C!
in a neighborhood of a, then

fla+z)= f(a) + Df|axz +0(|z|]) when =z — 0,

for some linear map z +— Df|,z, i.e., f is differentiable at a. If f is
considered as a complex valued function then

8.’1,‘2

Let v(t) = (71(t),72(¢)),a <t <b be a piecewise C! parametrization of
the curve I'. If P,Q are continuous functions on I, then

g |
/r Pdz + Qdy = / (POr2(8), 2@V, () + Qma (1), 12D (e)) i,

and this expression is independent of the choice of parametrization. Note

that
/fdg /f°7 d(go 7)dt

if f,g € CY(R2) and T’ C Q. In particular, for an exact form we have

/F dg = g(v(5)) — g(+(a)).

The arc length of the curve I' is

ri= far= [ " hrce) e = / RO+ (ara

and

[Pt +aa| < [ VIPFHTQPa < ITisup IFFFTRT.
r r r
Green’s formula (Stokes’ theorem) states that if P,Q € Cl(@), then
/ Pdz + Qdy = / (Qz - y)d’\’
Sw w
whereas Green’s identity (Green’s formula) states that if u,v € C! (@), then

/(uAv - vAu)dA Lw (u— — v ) do,

where §/0n is the outward normal derivative, i.e., Su/8n = 3" 1;(8u/8z;)
if 9 = (71, 72) is the outward normal to dw.
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On some occasions we also refer to the inverse function theorem, see, e.g.,
[H): If f:©2 — R? is C* and its derivavive D f|, at a €  is nonsingular,
then locally f has a C! inverse g.

B. Existence of test functions. There are “plenty” of functions in
C§°(R), namely, |
(i) for any K C 2 there is a ¢ € C§°(£2) such that ¢ = 1 in a neighborhood
of Kand 0 < ¢ < 1. ' 4 _
(i) if f € LL () and [, ¢fdA = 0 for all ¢ € C§°(R?), then f =0 a.e.
(iii) if f is continuous on K C  and € > 0, there is a ¢ € C§°(£2) such that
supg |¢ — f| <e.
(iv) if UQ, = Q, then there is a smooth partition of unity subordinate to the
open cover §1,, i.e., there are ¢p € C§°(fly,) such that 0 < ¢ < 1,
locally only a finite number of ¢ are nonvanishing and 3, ¢x =1 in Q.

C. Integration theory. From integration theory we use the standard
convergence theorems, such as Fatou’s lemma, Lebesgue’s theorem on dom-
inated convergence, and the monotone convergence theorem. Moreover, we
frequently use Jensen’s and Hoélder’s inequalities and Fubini’s theorem, the
duality of L? and L? for p < oo, and the one-to-one correspondence be-
tween the continuous linear functionals on C(K) and the space of finite
complex Borel measures on K (usually just referred to as measures on
K). Furthermore, we need the Jordan decomposition of a real measure,
the Lebesgue-Radon-Nikodym decomposition of a complex measure with
respect to a positive measure (the Lebesgue measure in our case) and the
weak type 1-1 estimate for the Hardy-Littlewood maximal function.

In particular, we frequently will make use of “differentiation under the
integral sign”: Suppose that X, u is a measure space and f(z,t) is a mea-
surable function on X x I, where [ is an interval in R, which is continuously
differentiable in t. Suppose further that f(z,t) and f'(z,t) are in L!(u)
for each fixed t so that

o(t) = / f(z,t)du(z) and h(t) = / £ (@, t)du(z)

are well-defined. One may ask whether g’(t) = h(t). Suppose that there is
a ¥ € L'(u) such that

I (z,t)] < ().

Then h(t) is continuous by the dominated convergence theorem. Moreover,

/ / |f(z, £)]dp(z)dt < oo,
XxI

so we can use Fubini’s theorem:

/a ’ h(t)dt = /a ’ ( / f(z, t)du(z)) dt = / ( /a ’ f’(z,t)dt) du(z)
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and hence

b
RS / (F(z,b) — f(z,a)) dp(z) = g(b) — 9(a)

for all a,b € I. Since h is continuous, g’ = h.

D. Functional analysis. We will use basic results such as orthogonal
decomposition and Parseval’s equality in Hilbert spaces, the Hahn-Banach
theorem, the Banach-Steinhaus theorem, and the open mapping theorem
in Banach spaces. Moreover, on some occasions we require Arzela-Ascoli’s
theorem on locally equicontinuous subsets of C(2) and Tietze's extension
theorem.

We also refer to the Fourier transform, Plancherel’s formula, and the
inversion formula; see, e.g., Ch. 9 in [Rul].



1

Some Basic Properties of
Analytic Functions

§1. Definition and Integral Representation

We identify C with R? by identifying the complex number z = z + iy with
the point (z,y) € RZ. Observe that a (complex-valued) differential form
Pdz+Qdy always can be written in the form fdz+gdz, where dz = dz+idy
and dz = dz—idy (take f = (P—iQ)/2 and g = (P+iQ)/2). This motivates
us to introduce the differential operators

2_1.(_3_-,-2) and _a__l(i i)
9z 2\or ‘By 5z 2\az T '5y

) af -
df- Srdo +a£ y=5£dz a{ (1.1)

Ny

so that

Note that A = 8%2/0z% + 62/63/2 = 40%/020%.

1.1 Proposition. If f is differentiable at the point a, then the limit
m f0+5) = @) (1.2

z-—o

exists if and only if (3f/0Z)|a = 0; and in that case, the limit equals
(8f/02)la-

The limit (if it exists) is denoted by f'(a).
Proof. The differentiability of f is equivalent to

fla+2) - fla) = 25L| +29L| +o(2).
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Thus, (1.2) exists if and only if

z—0 2 0Z la

exists, and this holds if and only if (8f/9%)|, = 0. The last statement
follows immediately. O

Notice that if f = u + v, where u and v are real, then the Cauchy-
Riemann equation 8f/8z = 0 is equivalent to

{“" =% (1.3)

Uy = —Vg

(identify the real and imaginary parts in the equation (8/8z + i8/8y)(u +
iv) = 0).

Definition. A function f € C'(R) is analytic (or holomorphic) in € if
0f/8z =0 in Q. The set of analytic functions is denoted by A(f).

In view of Proposition 1.1, f € C'(R) is analytic in Q if and only if (1.2)
exists for all a € €2, but we even have

1.2 Goursat’s Theorem. If f is any (complex valued) function in Q such
that (1.2) exists for all a € Q, then f is C! and hence analytic.

The proof appears later on! In most cases, it is advantageous to write the
Cauchy-Riemann equation in the complex form 8f/8z = 0, rather than as
(1.3). For instance, clearly the product rules

0 _of dg o _of Og
hold; thus, if f,g € A(S2), one immediately finds that fg € A(2) and

(f9)' = f'g+ fg'. Suppose that h(t) is C! on an interval I C R and that
f is C! in a neighborhood of the image of h in C. Then by (1.1),

d(foh) _ _of of : _Ofdh af dh
and therefore we have the chain rule
’ dfoh _8fdh  8fdh

dt +

dt,

@& " d:dt Toera
In the same way, if h(¢) is C? in some domain in C, then
8foh_§£§l_z+g_6_fz Ofoh Of0h  Of06h
or 9z 8r 9z o7 8% 08207 " Bz oF
Thus, if f, g are analytic, then f o g is analytic and (f o 9) = f'(g)g’.

and
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1.3 Example. If f € A(R2) and f'(z) = 0 for all z € 2, then df = 0 and
hence f is locally constant. Suppose now that f € A({p < |z| < R}) and
that f(z) = f(re*) only depends on §. Then by the chain rule

of _ of 0=z afaz—eiag—z:e"’f’

dr Bz or ' 0zor 9z ’
and therefore f is constant. The same conclusion holds if f is independent
of 6.

0=

Here are some other simple consequences of the product rule and the
chain rule (and the definition).
(a) If f,g € A(Q) and «, B € C, then fg € A(Q) and af + g € A(Q).
(b) z+ 2™, m being a natural number, is analytic in C.
(c) If f € A(Q), then 1/f € AQ\ {f = 0}). (First show that 1/z €
A(C\{o}) )
(d) zr €* =4of €*(cosy + isiny) is analytic in C.
(e) (8/02)z™ =mz™"1, (8/82)e* =e*, (8/02)(1/f)=—f"/f.
Exercise 1. Show that
(a) 8f/8z = 8f/0x=. -
(b) if f € A(R), then z — f(Z) is analytic in {z; z € Q}.
(c) if f € A(R) and f is real, then f is (locally) constant.
(d) if f € A(R2) and |f| is constant, then f is (locally) constant.
If the curve T is given by r(t) = r1(t) + ir2(t), a < t < b, then, see A in
the preliminaries,

b
/r fdz + gdz = j (f(r (&) (@) + g(r())7 (D) dt,

where of course r'(t) = r{(t) + ir}(t). Moreover,

/F fdz| = / " Fr@)r (O] < / @) @t = /P \fldo
so that (|dz| = do)

‘/Ffdz

1.4 Proposition. If F € A(Q) and f = F’, then
/P fdz = F(r(b)) — F(r(a)).

In particular, [ fdz =0 ifT is closed.

< / |flldz| < [T|sup|fl. (1.4)
r r

Proof. fdz = (0F/0z)dz = (8F/8z)dz + (8F/8z)dz = dF; therefore,
fdz is an exact form and thus the proposition follows, cf. item A in the
preliminaries. O
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In complex notation Green's formula becomes (check!)

Aw fdz+gdz = Zi/‘; (% - —6;(]) dA(z),

f,.9 € C'@). (1.5)
From this we immediately get

1.5 Cauchy’s Integral Theorem. If f € A(w) N CY (@), then

Jdz=0
Sw

The next theorem in particular tells us that the values of an analytic
function in the interior of a domain are determined by its values on the
boundary.

1.6 Cauchy’s Formula. If f € C1(@) and z € w, then

1 f(Qd¢ 1
f()—21rz w C—2 7

In particular, if f € A(w) N C1 (@), then

)2,

™

_ 1 F()d¢
f(Z) - -2_7?" Bw _Ctz—

Proof. Take z € w. For ¢ so small that {6 I€ — 2] < €} Cw, (1.5) (with
f replaced by f(¢)/(¢ — z)) gives that

af dx(Q) fdg fdc
2i /w\{k’ —z|<e} -2 ,[,w -z '/|C—2|=e =2 (1.6)

since ¢ — 1/(¢ — 2) is analytic in w \ {|¢ — 2| < ¢[}. By (1.5) again, we get
Je

fdg _ 1 .
i /K G-
2i
=5 [ . (ro+rc-2Z) o
2mi

3 (f(2) + O(I¢ — 21)) dA(C) = 2mif(2) + O(e).
et Jic-zi<e

Since ( — (¢ — z)™! is locally integrable, the theorem follows from (1.6)
when € tends to zero. O

1.7 Some Simple but Important Consequences.
(a) By Proposition 1.4 and Cauchy’s formula (with f = 1), we get

/ C—ndC={27Ti if n=1
Il=¢

0 if n#l.
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(b) If the curve I starts at a and ends up at b, then, by Proposition 1.4,
fa=Ki=b-a

(c) fpeC} (C) then (by Cauchy’s formula)
(84/3¢)(©)dN (&) _ #(¢ )d/\(C )
#(z) = R 5 (-3 [H929) an

where the second equality is obtained by making the linear change of
.variables ¢ — ¢+ z in the last integral and differentiating under the inte-
gral sign. Hence (8/8()1/m¢ = & (the Dirac measure) in the distribution
sense; this is equivalent to Alog|(|? = 4w since (8/9¢)log |¢|? = 1/¢
(even in the distribution sense).
(d) From Cauchy’s formula it follows that analytic functions have the mean
value property:
2w
f(z) = 511_r A f(z + ret)dt.

To see this, one simply makes the substitution ( = z + re*,0 < t < 2n
(so that d¢ = ire®*dt = i(¢ — z)dt) in the formula

- f(C)dC
f(2) ﬂ;/‘;-—d:r =

(e) If f is analytic and we differentate under the integral sign in Cauchy’s
formula, we find that f is C, f(m) ig analytic, and

(m) f(¢)d¢ _
Fmiz) = 27rz o0 (C — 2)™F1° m=0,1,2,.... (1.8)
Thus in particular we have that A(?) C C*°(Q) for any (2.

1.8 Proposition. If K C w CC R, then there are constants Cp, = Cpn . Kk
such that for all f € A(S?),

Siplf(m)l < CallfllLr(w)-

Proof. Take ¢ € C§°(w), 0 < ¢ < 1, such that ¢ = 1 in a neighborhood of
K. Let § = d(K, {2z € w; ¢(2) # 1}) Since f¢ € C§°(C), we get by (1.7)

o =on =1 [FLORE ek g

Notice that the integration in this mtegral is performed only over the strip
{¢; 0 < ¢ < 1} CcC w\ K. Hence for z in a neighborhood of K we can
differentiate the integral and obtain
mipy — ™ [ 0% F(Q)EA()
@ =5 | stic-am €K
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In this integral, | — z| > §, and therefore we get the estimate

sup /™| < —s sup | 2| [ 17(@1aAQ).
O

The formula (1.9) is a variant of Cauchy’s formula where the curve is
replaced by a strip. The usual Cauchy formula cannot be used in the
preceding proof (since we want Ll-estimates), nor in the next one (since
it deals with functions only defined a.e.). However, even in some other
situations it is more convenient to use (1.9) rather than the usual Cauchy
formula, as will be apparent in what follows.

1.9 Proposition (Weyl’s Lemma). Suppose that f € L] (2) and
8f/0z = 0 weakly, i.e.,

/ F06/82 =0, &€ CL(Q). (1.10)
Then there is a g € A(Q?) such that f = g a.e.

Thus, in particular, if f € C°(Q) and (1.10) holds, then f is analytic. An
analogous result is also true (with essentially the same proof) for f € D'(Q)
(the space of distributions on §2). Clearly, any f € A(2) satisfies (1.10).

Proof. Take w CC Q and ¢ € C§°(2) such that ¢ = 1 in a neighborhood
of @, and let

zEw.

g(z) =

If f is analytic, then (1.9) says that g = f in w; we are going to show
that (1.10) actually implies that f = g a.e. in w. Since g(z) is analytic in
w and w CC  is arbitrary, our proof is then complete. To do this, take
¥ € C§°(w). By Fubini’s theorem

Jowa == [S2o (-3 [ 2 10
w00 (5 [32)) 10+ [oz (3 [#5) 10
The first of these integrals vanishes by the assumption on f, since

1 [ 9¥(2)
¢(_; zZ—C

is in C§°(§2) (why?). According to (1.7), the second integral is

= [s©w 1) = [$©5©
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