

Manipulating the Mouse Embryo

A LABORATORY MANUAL
Second Edition

Britolita de son

Panga manggas Kadi di manugann. Mangganih binggan manggan

Prosen Bradlettarejiron

ในประวัติ สารักเซีย์กาลเก็บ เก็บ เก็บสำคัญ ตลาสะ และ สาร์ก

Particological States

Elizabeth Lace

Marker School American Control Series

Cold Spring Harbor Laboratory Press 1994

Manipulating the Mouse Embryo

A Laboratory Manual Second Edition

All rights reserved
© 1994 by Cold Spring Harbor Laboratory Press
Printed in the United States of America
Book and cover design by Emily Harste

Front cover: Whole mount in situ hybridization of HNF-3β expression in 9.0-day p.c. embryo (see Sasaki and Hogan 1993). (Photo courtesy of H. Sasaki, HHMI, Vanderbilt Medical School.)

Back cover: Whole mount in situ hybridization of follistatin expression in early somite stage embryos. (Photo courtesy of R. Avkell, National Institute for Medical Research.)

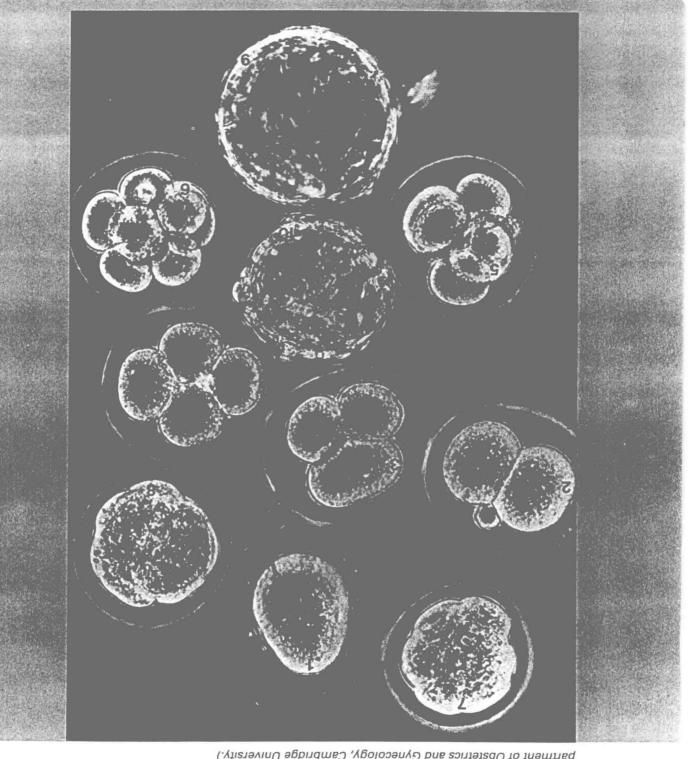
Library of Congress Cataloging-in-Publication Data

Manipulating the mouse embryo: a laboratory manual / Brigid Hogan...

[et al.]. -- 2nd ed.

p. cm.

Includes bibliographical references and index. ISBN 0-87969-384-3


Mice--Embryos--Laboratory manuals.
 Z. Mice--Genetic engineering--Laboratory manuals.
 3. Transgenic mice--Laboratory manuals.
 4. Mice as laboratory animals.
 I. Hogan, Brigid.

QL737.R6M2468 1994 599.32'33 94-22457 599.32'33--dc20 CIP

Certain experimental procedures in this manual may be subject to national or local legislation or agency restrictions. Users of this manual are responsible for obtaining the relevant permissions, certificates, or licenses in these cases. Neither the authors of this manual nor Cold Spring Harbor Laboratory assumes any responsibility for failure of a user to do so.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cold Spring Harbor Laboratory Press for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$0.15 per page is paid directly to CCC, 222 Rosewood Dr., Danvers, MA 01923. [0-87969-384-3/94 \$0 + .15]. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

All Cold Spring Harbor Laboratory Press publications may be ordered directly from Cold Spring Harbor Laboratory Press, 10 Skyline Drive, Plainview, New York 11803-2500. Phone: 1-800-843-4388 in Continental U.S. and Canada. All other locations: (516) 349-1930. FAX: (516) 349-1946.

Frontispiece: Preimplantation stages in mouse embryogenesis. (1) Fertilized egg. Note the sperm within the zona pellucida. (2) Two-cell stage. A polar body is still visible. (3) Threecell stage. Cleavage of the blastomeres is asynchronous. (4) Four-cell stage. (5) Five-cell stage. (6) Eight-cell uncompacted morula. (7) Compacted morula. (8) Early blastocyst. A small blastocoel cavity is present. (9) Expanded blastocyst. (10) Hatched blastocyst. Prior to hatching the blastocoel cavity expands and contracts, possibly because the permeability seal created by the zonular apical tight junctions between the trophectoderm cells is temporarily broken when these cells divide. (Photograph provided by Dr. P.R. Braude, Department of Obstetrics and Gynecology, Cambridge University.)

Preface to First Edition

These are exciting times for mammalian embryology. The revolution of recombinant DNA technology has made possible experiments only dreamt of by the pioneers of the field—the ability to isolate and sequence genes, engineer them in specific ways, monitor their expression by in situ hybridization, and rapidly map them by means of restriction fragment length polymorphisms. These feats have been matched by equally impressive advances in techniques for introducing foreign DNA into the germ line of mice and larger animals. Microinjection of DNA into the fertilized egg, retroviral infection, and transformation of pluripotential embryonic stem cell lines have all opened up ingenious new ways of studying the control of gene expression during development and of following the consequences of altering or blocking specific gene products. Dazzling though these technologies are, they are worth very little unless applied to projects designed to ask fundamental questions about embryonic development. It is here that the molecular biologist can look for inspiration to an impressive tradition in mammalian embryology that has identified and described the major events that need to be understood in molecular terms. The most obvious are cell diversification and differentiation. But we also know very little about the various morphogenetic processes which, for example, bring about changes in tissue organization, direct the migration of the germ cells and neural crest, and establish specific nerve connections.

Classical mammalian embryology has also identified many areas highly relevant to human reproduction that are ripe for molecular studies, including sex determination, germ cell maturation, implantation, maternal-fetal interaction, and placental function. At another practical level, there are now possibilities for increasing the yield and potential uses of agricultural animals and for understanding and rectifying inherited defects and childhood cancers.

It is to help catalyze the interaction between molecular biology and mammalian embryology that this manual has been written. It grew out of the teaching material for two practical courses in the Molecular Embryology of the Mouse held at Cold Spring Harbor Laboratory in 1983 and 1984. These courses, in turn, could never have been organized without the foresight and enthusiasm of James Watson, and we should like to thank him for so much support and inspiration over the last 3 years. It is indeed fitting that Cold Spring Harbor Laboratory was the first to hold courses of this kind. Not only does the Laboratory have a great tradition in molecular biology, but also, as readers of our introduction will learn, it was the birthplace of some of the first inbred mouse strains and the site of pioneering work in mouse genetics.

Many people generously and enthusiastically contributed their hard-won ex-

pertise to the courses and the manual. In particular, we should like to express our gratitude to Anne McLaren, who not only proved to be an almost inexhaustible source of information on all aspects of reproductive biology, but also gave gentle sympathy and encouragement to students searching in vain for embryos and oviducts! We also owe special thanks to Christopher Graham, who initially taught us many of the techniques in this manual, and who provided valuable comments on the manual at various stages of its preparation. Lee Silver and Douglas Hanahan generously helped us to organize the animal breeding, laboratory space, and other facilities necessary to run the course and also provided many helpful comments on the manuscript. We wish to thank the following people for demonstrating techniques in the course and/or contributing information that has been incorporated into the text: Eileen Adamson, Lynne and Bob Angerer, Helene Axelrad, Alan Bernstein, Ralph Brinster, Bruce Cattanach, Verne Chapman, Ted Evans, Susan Howlett, Rudolf Jaenisch, M.H. Kaufman, Robb Krumlauf, Cecelia Lo, James McGrath, Hester Pratt, Liz Robertson, Michael Rosenberg, Janet Rossant, Davor Solter, and Heidi Stuhlman. We also thank Denise Barlow, Kiran Chada, Kathie Raphael, and Liz Robertson, who served as assistant instructors in the course.

Finally, we could not have produced this manual without the skill and expertise of the Cold Spring Harbor Laboratory Publications Department, headed by Nancy Ford. Our editor Judy Cuddihy, in particular, organized much of the production and guided us through times when it seemed that the Manual would never be finished.

B.L.M.H. F.C. E.L.

Preface to Second Edition

More than a decade has passed since the inaugural Molecular Embryology of the Mouse Course was held at Cold Spring Harbor Laboratory, catalyzing the production of the first edition of this manual. During that time, mouse developmental genetics and molecular embryology have emerged as two of the most exciting and fast-moving fields in current biology. Many different factors have contributed to this spectacular growth, including the realization that genes and mechanisms controlling embryonic development have been conserved during evolution, so that findings in Drosophila and Caenorhabditis elegans can be quickly applied to the mouse embryo. This has led to many productive and enjoyable collaborations between developmental biologists studying different organisms. Technical and conceptual advances in mouse genetics have also been crucially important, especially the ability to mutate genes selectively by homologous recombination in embryonic stem (ES) cells. In recognition of these and many other seminal innovations, we have made a number of significant additions to the second edition of Manipulating the Mouse Embryo. For example, the section describing the early embryology of the mouse has been enlarged and updated, and information has been added about access to new genetic databases. Detailed protocols have been provided concerning the culture and manipulation of embryonic stem cells, and more extensive discussion has been provided of methods for analyzing gene expression, in particular whole mount in situ hybridization and immunocytochemistry.

Many people are responsible for helping us to compile all this new information and to revise previous descriptions. We especially thank, in alphabetic order, Alex Joyner, Nils Lonberg, Andy McMahon, Jill McMahon, Jeff Mann, Andras Nagy, Janet Rossant, Gary Schoenwolf, and Patrick Tam. On occasion we have severely tried their patience in the quest for information, and we hope that the final result will repay our debt. We also thank all our immediate colleagues, graduate students, and postdocs, who went over protocols and criticized their organization so effectively. Production of this Second Edition was, once again, the responsibility of many talented and dedicated people in the Cold Spring Harbor Laboratory Press. They have learned over the years how to interact so successfully with compulsive and busy scientists scattered across the globe. In particular, Mary Cozza, Dorothy Brown, and Christy Kuret, under the guidance of Managing Editor, Nancy Ford, and Executive Director, John Inglis, are to be congratulated for bringing to your laboratory bench yet another superbly produced, and hopefully indispensable, Cold Spring Harbor manual. Finally, we dedicate this Second Edition to the memory of Françoise Kelly, a kind and generous colleague and friend who, like us all, delighted in the study of that beautiful organism—the mouse embryo.

> B.L.M.H. R.S.P.B. F.C. E.L.

Manipulating the Mouse Embryo

A LABORATORY MANUAL Second Edition

Contents

Preface to First Edition, v

Preface to Second Edition, vii

Developmental Genetics and Embryology of the Mouse: Past, Present, and Future, 1

Mendelian Inheritance and Linkage: The Beginnings of Mouse Genetics, 2 Origins of the Laboratory Mouse, 3

Origin of Inbred Strains and Other Resources of Mouse Genetics, 7

Origins of Developmental Genetics of the Mouse, 10

Origins of Experimental Mouse Embryology, 13

Manipulating the Mouse Genome, 15

The Systematic Search for New Genes and Developmental Mutants in the Mouse, 16

Section A SUMMARY OF MOUSE DEVELOPMENT, 19

EARLY MOUSE DEVELOPMENT, 21

Origin of Germ Cells and Their Migration to the Genital Ridges, 28 Sex Determination and Germ Cells, 31

Spermatogenesis, 32

Oogenesis, 33

Ovulation, 38

Fertilization, 40

Cytoskeletal Organization of the Egg before and after Fertilization, 41 Parthenogenesis, 43

Early Cleavage: One-cell Embryo to Eight-cell Uncompacted Morula, 45 Analysis of Embryonic Gene Expression Using RT-PCR Techniques and cDNA Libraries, 47

Restriction in the Developmental Potential of Embryonic Nuclei, 47 Compaction and the Formation of the Blastocyst: The First

Differentiation Events, 48

Changes in Cell Adhesiveness with Compaction, 48

Cell Polarization with Compaction, 49

Segregation of the Trophectoderm and Inner Cell Mass Cell Lineages, 51 Implantation, 51

Trophectoderm and Its Derivatives, 54

The Second Round of Differentiation: Formation of the Primitive Endoderm and Ectoderm, 56

Lineage Markers Used with Mouse Embryos, 57

The Primitive Ectoderm Lineage, 57

Primitive Ectoderm Cells Divide Rapidly, 61

The Epiblast Is a Pluripotent Tissue, 62

General Description of Gastrulation and the Formation of Mesoderm and Definitive Endoderm, 63

The Node, 68

Fate Maps of Gastrulation, 69

Generation of Regional Diversity in the Mesoderm, 73

Tail Bud, 73

Turning, 74

Somites and their Derivatives, 74

Lateral Plate and Intermediate Mesoderm: Kidney and Genital Ridges, 81 Limbs, 82

Development of the Nervous System: Neurulation, Timing of Neural Tube Closure, 83

Generation of Regional Diversity in the Early Brain and Neural Tube, 84 Neural Crest, 88

Formation of the Branchial Arches and the Pharyngeal Region, 90 Gut, 91

Teratocarcinoma Cells and Embryonic Stem Cells, 92

Size Regulation, 93

Imprinting, 95

X-inactivation, 96

Extraembryonic Tissues, 98

Extraembryonic Endoderm: The Primitive Endoderm Gives Rise Only to Visceral and Parietal Endoderm, 99

Gene Expression in Visceral Endoderm, 100

Gene Expression in Parietal Endoderm, 102

Differentiation of the Extraembryonic Mesoderm, 103

The Structure and Function of the Placenta, 103

THE ADULT MOUSE, 106

Mouse Coat Color and Its Genetics, 106

A (agouti), 107

b (brown), 108

c (albino), 108

d (dilute), 109

Spotting Mutations, 109

Section B SETTING UP A COLONY FOR THE PRODUCTION OF TRANSGENIC AND MUTANT MICE, 115

SETTING UP THE COLONY, 117

Production and Breeding of Transgenic and Mutant Mice, 117

Female Mice for Matings to Produce Fertilized Eggs for DNA Injection, 117

Female Mice for Matings to Produce Blastocysts for Embryonic Stem Cell Injection, 120

Fertile Stud Male Mice, 120

Sterile Stud Male Mice for the Production of Pseudopregnant Females, 121

Female Mice to Serve as Pseudopregnant Recipients and Foster Mothers, 121

Transgenic Mice, Including "Founder" Mice and Transgenic Lines Derived from These Founders, 123

Pathogen Control in Experimental Mouse Colonies, 124

Nomenclature for Transgenic Mice, 126

Long-term Storage of Transgenic Mice by Freezing Embryos, 126

Section C RECOVERY, CULTURE, AND TRANSFER OF EMBRYOS AND GERM CELLS, 127

SETTING UP NATURAL MATINGS, 129

INDUCING SUPEROVULATION, 130

Influence of Age and Weight, 130

Dose of Gonadotropins, 131

Time of Administration of the Gonadotropins, 131

Strain of Mouse, 132

Reproductive Performance of the Stud Males, 132

INJECTING A MOUSE INTRAPERITONEALLY, 133

MAKING PIPETTES FOR COLLECTING AND TRANSFERRING EMBRYOS, 134

Making Pipettes from Hard Glass Capillary Tubing, 134

Preparing Siliconized Pasteur Pipettes, 135

RECOVERING PREIMPLANTATION EMBRYOS, 136

Opening the Abdominal Cavity, 136

Collecting Fertilized Eggs and Removing Cumulus Cells with Hyaluronidase, 138

Collecting Two- to Eight-cell Embryos and Eight-cell Compacted Morulae, 140

SETTING UP MICRODROP CULTURES, 142

COLLECTING BLASTOCYSTS, 144

IN VITRO FERTILIZATION, 146

ETHANOL-INDUCED PARTHENOGENETIC ACTIVATION OF OOCYTES, 148 ISOLATING POSTIMPLANTATION-STAGE EMBRYOS, 151

Early Egg Cylinder Stage (~5.5 Days p.c.), 152

Early Primitive Streak Stage (~6.5 Days p.c.), 154

Late Primitive Streak Stage (~7.5 Days p.c.), 156

Early Neural Fold Stage (~8 Days p.c.), 157

Early Somite Stage (~8.5 Days p.c.), 158

ISOLATING EXTRAEMBRYONIC MEMBRANES, 160

SEPARATING POSTIMPLANTATION GERM LAYER, 163

ISOLATING GERM CELLS FROM THE GENITAL RIDGE, 166

ISOLATING AND IN VITRO CULTURING OF IMMATURE AND PRE-

OVULATORY OOCTYES, 169

VASECTOMIZING MALES AND PREPARING PSEUDOPREGNANT FEMALES, 170

TRANSFERRING EMBRYOS, 173

Oviduct Transfer, 173

Uterine Transfer, 178

CESAREAN SECTION AND FOSTERING, 182 IMPLANTING TISSUES UNDER THE KIDNEY CAPSULE, 183 TRANSFERRING OVARIES, 185 INJECTING VIRUSES AND CELLS IN UTERO, 187

Section D IN VITRO MANIPULATION OF PREIMPLANTATION EMBRYOS, 189

REMOVING THE ZONA PELLUCIDA, 191

Method Using Acidic Tyrode Solution, 191

Method Using 0.5% Pronase Solution in M2 Medium, 191

DISAGGREGATING CLEAVAGE-STAGE EMBRYOS INTO INDIVIDUAL CELLS,

MAKING AGGREGATION CHIMERAS, 193

ISOLATING THE INNER CELL MASS BY IMMUNOSURGERY, 194

MICROINJECTING ES CELLS INTO HOST BLASTOCYSTS, 196

Preparing the Injection and Holding Pipettes, 196

Assembling the Micromanipulator, 199

Injecting Blastocysts, 201

ALTERNATIVES TO MICROINJECTING BLASTOCYSTS TO PRODUCE CHIMERAS, 205

ELECTROFUSING TWO-CELL MOUSE EMBRYOS, 207

NUCLEAR TRANSPLANTATION IN THE MOUSE EMBRYO, 209

Isolating Embryos, 209

Making a Holding Pipette, 209

Making an Enucleation/Injection Pipette, 210

Enucleating an Egg, 213

Introducing Nuclei into Enucleated Embryos, 215

Preparing Inactivated Sendai Virus, 216

Section E PRODUCTION OF TRANSGENIC MICE, 217

INTRODUCTION, 219

Applications of Transgenic Mouse Technology, 219

Methods for Gene Transfer into the Mouse, 220

DESIGNING TRANSGENES, 222

Effects of Prokaryotic Vector Sequences, 222

Length of DNA Construct, 222

Cointroduction of Two Transgenes, 222

Distinguishing Expression of Transgenes and Endogenous Genes, 222

Strategies for Identifying Regulatory Sequences, 223

Reporter Genes, 223

Using Previously Identified Tissue-specific Regulatory Sequences in Transgenic Constructs, 223

Expression of cDNAs and the Role of Introns in Transgene Expression, 224

Using "Housekeeping Gene" Promoters to Direct Ubiquitous Expression, 224

Transgenic Constructs for Conditional Gene Expression in the Mouse,

MICROINJECTING DNA INTO PRONUCLEI, 226

Factors Affecting the Efficiency of Gene Transfer, 226

Preparing DNA Samples for Microinjection, 228

Method I: Electroelution with an Optional, but Recommended, CsCl Centrifugation Step, 228

Method II: Isolation Using Low-melt Agarose and "GELase," 230

Choice of Mouse Strain, 232

Timing of Injection, 232

Making Holding Pipettes, 232

Making Injection Pipettes, 235

The Microinjection Set-up, 237

Microscope, 237

Micromanipulators, 237

Table, 238

Syringe to Control Holding Pipette, 242

Syringe to Control Injection Pipette, 242

Variable Pressure Systems, 242

Constant Flow Systems, 243

Injection Chambers, 243

Injecting Mouse Egg Pronuclei, 244

Trouble-shooting Guide, 248

RETROVIRAL INFECTION OF PREIMPLANTATION EMBRYOS, 251

Section F ISOLATION, CULTURE, AND MANIPULATION OF EMBRYONIC STEM CELLS, 253

CULTURING ES CELLS, 255

General Discussion of Culture Conditions for ES Cells, 255

Culture Medium, 256

Trypsin/EDTA, 257

Serum, 257

Addition of LIF, 258

Mouse Embryo Fibroblasts as Feeder Layers, 258

STO Fibroblasts as Feeder Cells, 259

Mycoplasma Testing, 259

Preparing Mouse Embryo Fibroblasts, 260

Preparing STO or Mouse Embryo Fibroblast Feeder Dishes, 261

Treatment with Mitomycin, 262

Treatment by y-Irradiation, 262

CHOOSING HOST MOUSE STRAINS AND BREEDING HOMOZYGOUS MUTANTS, 263

Pluripotential ES Cell Lines Already Available, 264

DE NOVO ISOLATION OF EMBRYONIC STEM CELLS FROM

BLASTOCYSTS, 265

OVARIECTOMY OF PREGNANT FEMALE MICE TO INDUCE IMPLANTATION DELAY OF BLASTOCYSTS, 273

DESIGNING TARGETING CONSTRUCTS AND PREPARING DNA FOR ELECTROPORATION, 275

General Considerations, 275

Vector Design, 275

DNA Purification, 276

ELECTROPORATING DNA INTO EMBRYONIC STEM CELLS AND SELECTION FOR CELLS IN WHICH DNA HAS UNDERGONE HOMOLOGOUS RECOMBINATION, 277

ISOLATING INDIVIDUAL EMBRYONIC STEM CELL COLONIES, 279
RAPID PREPARATION OF DNA FROM CELLS IN 24-WELL TISSUE CULTURE
DISHES, 282

FREEZING CELLS, 283

ALTERNATIVE RAPID METHOD FOR REPLICA PLATING AND FREEZING
CELLS AND ANALYZING DNA BY SOUTHERN BLOT ASSAY USING
96-WELL TISSUE CULTURE DISHES, 285

Part A: Picking, Replicating, and Freezing Colonies, 285

Part B: Isolating and Screening DNA, 287

RAPID ANALYSIS OF DNA BY POLYMERASE CHAIN REACTION, 289

Section G ANALYSIS OF TRANSGENIC MICE, 291

ANALYZING EXOGENOUS GENES IN TRANSGENIC MICE, 293
ISOLATING HIGH-MOLECULAR-WEIGHT DNA FROM MOUSE TAILS, 296
ISOLATING HIGH-MOLECULAR-WEIGHT DNA FROM YOLK SACS OF 9.5-DAY
P.C. OR LATER EMBRYOS, 299

PERFORMING POLYMERASE CHAIN REACTION ON SMALL FRAGMENTS OF MOUSE EMBRYOS, 301

IDENTIFYING HOMOZYGOUS TRANSGENIC MICE OR EMBRYOS, 305

Quantitation of Transgene Dosage, 305

Quantitation of Transgene Product or Phenotype, 306

In Situ Hybridization to Interphase Nuclei, 306

Test Breeding, 307

Southern Blot Analysis Using a Flanking Probe, 307

PCR Analysis Using a Flanking Primer, 307

CLONING TRANSGENE/HOST DNA JUNCTIONS, 309

Screening Bacteriophage λ Libraries with Transgene, 309

Plasmid Rescue, 310

Inverse PCR, 310

KARYOTYPING MOUSE CELLS, 311

Preparation of Cells, 313

Slide Making, 314

G-Banding, 314

MAPPING INTEGRATED GENES TO CHROMOSOMES BY IN SITU HYBRIDIZATION, 316

RNasing Slides, 317

Hybridization, 317

Washes, 318

Autoradiography, 318

TISSUE BIOPSIES: PARTIAL HEPATECTOMY, SPLENECTOMY, NEPHRECTOMY, AND TAIL BLEEDING, 319

Partial Hepatectomy, 319

Splenectomy, 321

Nephrectomy, 322

Tail Bleeding, 323

Section H TECHNIQUES FOR VISUALIZING GENES, GENE PRODUCTS. AND SPECIALIZED CELL TYPES, 325

ISOLATING TOTAL RNA FROM MOUSE EMBRYOS OR FETAL TISSUES, 327 GENERAL TECHNIQUES FOR IN SITU HYBRIDIZATION AND

IMMUNOHISTOCHEMISTRY OF MOUSE EMBRYOS, 330

Tissue Fixation, 330

Fresh 4% Paraformaldehyde, 330

Bouin's Fixative, 330

Methanol/DMSO, 4:1, 331

Dehydration into Xylene, 331

Embedding in Wax, 331

Tricks for Handling and Embedding Small Specimens, 332

Handling Blastocysts for Fixation, 333

Cutting Sections, 333

Preparing Glass Slides and Coverslips for In Situ Hybridization, 334

Coating slides with TESPA, 335

Coating Slides with Poly-L-lysine, 335

Siliconizing Coverslips, 335

Dewaxing and Rehydrating Sections Prior to In Situ Hybridization or Staining, 335

IMMUNOHISTOCHEMISTRY OF EMBRYO SECTIONS, 336

IMMUNOHISTOCHEMISTRY OF WHOLE MOUNT EMBRYOS, 340

IN SITU HYBRIDIZATION WITH RNA PROBES, 344

General Procedures for Avoiding Contamination with RNase, 344

Fixing, Wax Embedding, and Sectioning, 344

Preparing Probe, 347

Prehybridization, 348

Hybridization, 349

Posthybridization Washing, 349

Autoradiography, 350

Autoradiography—Developing, 350

IN SITU HYBRIDIZATION OF WHOLE MOUNT EMBRYOS WITH RNA PROBES.

352

General Considerations, 353

Preparing Embryos, 353

Preparing Probe, 354

In Situ Hybridization Procedure, 357

SECTIONING SPECIMENS AFTER IN SITU HYBRIDIZATION, 368

DNA-DNA IN SITU HYBRIDIZATION TECHNIQUE FOR DETECTING

TRANSGENIC CELLS CARRYING MULTIPLE COPIES OF A

GLOBIN GENE, 369

Preparing Biotinylated Probe, 371

Preparing Tissues and Slides, 371

Hybridization, 372

Detection, 372

STAINING FOR β-GALACTOSIDASE (lacZ) ACTIVITY, 373

Staining Whole Embryos, 374

Staining Frozen Sections, 375

GLUCOSE PHOSPHATE ISOMERASE ELECTROPHORESIS, 376

STAINING EMBRYOS FOR CARTILAGE AND BONE, 379 STAINING NEWBORN AND ADULT MICE FOR BONE, 381

DETERMINATION OF SEX USING MOLECULAR PROBES, 382

Determining Sex Using Retroviral DNA Probes, 382

Determining Sex Using Polymerase Chain Reaction to Detect the Sry Gene, 382

SEXING EMBRYOS BY STAINING AMNION NUCLEI, 384

Section I IN VITRO CULTURE OF EGGS, EMBRYOS, PRIMORDIAL GERM CELLS, AND TERATOCARCINOMA CELLS, 385

GENERAL CONSIDERATIONS, 387

CULTURE MEDIA FOR PREIMPLANTATION-STAGE EMBRYOS, 389

Preparing M16 Culture Medium, 390

Preparing M2 Culture Medium, 392

Preparing M2 and M16 Media from Concentrated Stocks, 394

M2 from Concentrated Stocks, 396

M16 from Concentrated Stocks, 397

Other Media Used for Culturing Preimplantation Embryos, 397

WHITTINGHAM'S MEDIUM FOR IN VITRO FERTILIZATION OF MOUSE OOCYTES, 398

CULTURE MEDIA FOR BLASTOCYSTS, POSTIMPLANTATION EMBRYOS, AND TISSUES, 399

Culture of Blastocysts, 399

Preparing Human Placental Cord Serum, 399

CULTURE OF PRIMITIVE STREAK/EARLY SOMITE STAGE EMBRYOS, 401

Roller Culture Apparatus, 401

Preparing Embryos, 401

Preparing Medium, 402

CULTURE OF PRIMORDIAL GERM CELLS FROM EMBRYOS OF DIFFERENT STAGES, 405

CULTURE OF TERATOCARCINOMA CELLS, 408

F9 Teratocarcinoma Cells, 408

Preparing Gelatin-coated Tissue Culture Dishes, 408

Subculturing with Trypsin/EDTA, 408

Differentiation into Parietal Endoderm-like Cells, 410

Differentiation into Visceral Endoderm-like Cells, 412

Other Teratocarcinoma Cell Lines, 412

Serum-free Media for Teratocarcinoma Cells, 412

Appendix 1 Buffers and Solutions, 415

Acidic Tyrode Solution for Removing Zonae, 415

Alkaline Phosphatase Buffers, 415

Alkaline Phosphatase Staining Solution, 416

Avertin, Anesthetic, 416

Bovine Serum Albumin (BSA), 417

Ca++/Mg++-free PBS, 417

Ca++/Mg++-free Tyrode Ringer's Saline (pH 7.6-7.7), 417

Hyaluronidase, 417

NTM Buffer (NTMT without Tween 20) for In Situ Hybridization of Intact Embryos with RNA Probes, 417

NTMT Buffer for In Situ Hybridization of Intact Embryos with RNA Probes, 417

Pancreatin/Trypsin Solution for Separating Germ and Tissue Layers, 418 PBSMT for Immunohistochemistry of Whole Mount Embryos, 418 PBT, 418

Phenol/Chloroform Solution for Isolating Total RNA from Mouse Embryos or Fetal Tissues, 418

Phosphate-buffered Saline (PBS), 419

Pronase Solution, 419

Saline/EDTA Buffer plus Glucose for Isolation of Germ Cells and Tissue Culture, 419

20x SSC, 420

20x SSPE, 420

TE (Tris/EDTA) Buffer, 420

0.25% Trypsin in Tris-Saline for Tissue Culture, 420

Trypsin/EDTA Solutions, 421

Appendix 2 Sources of Information, 423

Genetic Resources, 423 Books, 424 Journals, 424

Databases, 425

Software, 426

Appendix 3 Suppliers, 429

Inbred, Hybrid, and Random-bred Mice, 429 Mouse Genomic DNAs and RNAs, 429 Mouse Genomic and cDNA Libraries and Clones, 429 Equipment and Supplies, 430

Recommended Reading, 439

References, 441

Glossary, 471

Index, 475