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INTRODUCTION.

 This course of lectures is due to the desire on my part to
bring the study of mathematics in the university into closer
touch with the needs of the secondary schools. Still it is not
intended for beginners, since the matters under discussion are
treated from a higher standpoint than that of the schools.
On the other hand, it presupposes but little preliminary work,
only the elements of analysis being required, as, for example,
in the development of the exponential function into a series.
‘We propose to treat of geometrical constructions, and our
object will not be so much to find the solution suited to each

case as to determine the possibility or impossibility of a
solution.

Three problems, the object of much research in ancient
times, will prove to be of special interest. They are

1. The problem of the duplication of thc cube (also ca.llod
the Delian problem).

2. The trisection of an arbitrary angle. :
8. The quadrature of the circle, i.e., the construction of .

In all these problems the ancients sought in vain for a
solution with straight edge and compasses, and the celebrity
of these problems is due chiefly to the fact that their solution
seemed to demand the use of appliances of a higher order.:
In fact, we propose to show that a solution by the use of
straight edge and compasses is impossible.
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The impossibility of the solution of the third problem was
demonstrated only very recently. That of the first and second
is implicitly involved in the Galois theory as presented to-day
in treatises on-higher algebra. On the other hand, we find
no explicit demonstration in elementary form unless it be in
Petersen’s text-books, works whmh are also noteworthy in
other respects.

At the outset we must insist upon the difference between
practical and theoretical constructions. For example, if we
need a divided circle as a measuring instrument, we construct
it simply on trial. Theoretically, in earlier times, it was
. possible (i.s., by the use of straight edge and compasses) only
to divide the circle into a number of parts represented by
2%, 3, and 5, and their products. Gauss added other cases
by showing the possibility of the division into parts where
_ p is a prime number of the form p=2%" 41, and the impos-
sibility for all other numbers. No practical advantage is
derived from these results; the significance of Gauss's de-
velopments is purely theorvetical. The same is true of all the
discussions of the present course.

Qur fundamental problem may be stated : What geometrical
constructions are, and what are not, theoretically possible? To
define sharply the meaning of the word ¢ construction,” we
must designate the instrumeats which weé propose to use in
each case. We shall consider

1. Straight edge and compasses,

2. Compasses alone,

3. Btraight edge alone,

4. Other instruments used in oonnechon with straight edge

and compasses,

The singular thing is that elementary geometry furnishes
no answer to the question. We must fall back upon algebra
and the higher analysis. The question then arises: How
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shall we use the language of these sciences to express the
-employment of straight edge and compasses? This new
method of attack is rendered necessary because elementary
geometry possesses no general method, no algorithm, as do
the last two seiences.

In snalysis we have first rational operations: addition,
subtraction, multiplication, and division. These operations
can be directly effected geometrically upon two given seg-
ments by the aid of proportions, if, in the case of multiplica-
tion and division, we introduce an auxiliary unit-segment.
. Further, there are ¢rrational operations, subdivided into
algebraic and transcendental. The simplest algebraic opera-
tions are the extraction of square and higher roots, and the
‘solution of algebraic equations not solvable by radicals, such
as thoee of the fifth and higher degrees. As we know how to
construet v/ab, rational operations in general, and irrational
operations involving only square roots, can be constructed.
On the other hand, every individual geometrical construction
which can be reduced to the intersection of two straight
lines, & straight line and a circle, or two circles, is equivalent
‘to a rational operation or the extraction of & squarg root. In
the higher irrational operations the construction is therefore
impossible, unless we can jfind a way of effecting it by the aid
of square roots. In all these constructions it is obvious that
the number of operations must be limited.

'We may therefore state the following fundamental theorem :
The necessary and sufficient condition that an analytic expres-
sion oun be constructed with straight edge and compasses ts that
it can be derived from the known quantities by a finite number
of rational operations and sguare roots.

Accordingly, if we wish to show that a guantity cannot be
constructed with straight edge and compasses, we must prove
that the corresponding equation is not solvable by a finite
number of square roots.



4 INTRODUCTION.

A fortiori the solution is impossible when the problem
has no corresponding algebraic equation. An expression
which satisfies no algebraic equation is called a transcenden-
tal number. This case oceurs, as we shall show, with the
number .



PART L

THE POSSIBILITY OF THE CONSTRUCTION OF ALGEBRAIC
EXPRESSIONS.

CHAPTER L

Algebraic Equations Solvable by Square Roots.

The following propositions taken from the theory of alge-
braic equations are probably known to the reader, yet to
secure greater clearness of view we shall give brief demon-
strations.

If x, the quantity to be constructed, depends only upon rational
expressions and square roots, it 18 a root of an trreducible equa-
tion $(x) = 0, whose degree is always a power of 2.

1. To get-a clear idea of the structure of -the quantity x,
suppose it, e.g., of the form
\La+\/c+ef+\/;l+\/_+p+\/:|
Va+ Vb vr

where a, b, ¢, d, ¢, f, p, q, r are rational expressions.

2. The number of radicals one over another occurring in
any term of x is called the order of the term ; the preceding
expreasion contains terms of orders 0, 1, 2.

8. Letp desiénate the maximum order, so that no term
can have more than u radicals one over another.
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4. In the example x=+v2+ V3 + V6, we have three

expressions of the first order, but as it may be written
x=VE+ VB+ V3.3,
it really depends on only two distinet expressions.

We shall suppose that this reduction has been made n all the
terms of x, so that among the n terms of order p none can be
expressed rationally as a function of any other terms of order p
or of lower order.

We shall make the same supposition regarding terms of
the order u—1 or of lower order, whether these occur ex-
plicitly or implicitly. This hypothesis is obviously a very
natural one and of great importance in later discussions.

5. Normar Form oF x.

If the expression x is a sum of terms with different denom-
inators we may reduce them to the same denominator and
thus obtain x as the quotient of two integral functions.

Suppose VQ one of the terms of x of order x ; it can ocour
in x only explicitly, since u is the maximum order. Since,
further, the powers of '\/-Q- may be expressed as functions of
v/Q and Q, which is a term of lower order, we may put

a+bV0Q
c+dVQ’
where a, b, ¢, d contain no more than n — 1 terms of order g,
besides terms of lower order.
Multiplying -both terms of the fraction by ¢ —d vQ, VQ
disappears from the denominator, and we may write
B N BN
where a and 8 contain no more than n — 1 terms of order p.
For a second term of order p we have, in a similar manner,

x=¢l+ﬁ1\/6’m
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The x may, therefore, be transformed so as to contain a term
of given order p only in ils numerator and there only linearly.

We observe, however, that products of terms of order u
may occur, for « and g still depend upon n — 1 terms of order
u  We may, then, put '

a=uay+ aj \/—Q_n B=Bu+ Bu \/—Q-;r

and hence
x = (ay + a;s \/6{) 2 (ﬁu + Bis \/Q_x) \/6

6. We proceed in a similar way with the different terms
of order up— 1, which occur explicitly and in Q, Q,, ete., so
that each of these quantities becomes an integral linear func-
tion of the term of order u —1 under comsideration. We
then pass on to terms of lower order and finally obtain x, or
rather its terms of different orders, under the form of rational
integral linear functions of the individual radical expressions
which occur explicitly. We then say that x is reduced to
the normal form.

7. Let m be the total number of independent (4) square
roots occurring in this normal form. Giving the double sign
to these square roots and combining them in all possible ways,
we obtain a system of 2™ values

Xgy Xgy o o o o x’.,,

which we shall call conjugate values.
We must now investigate the equation admm;mg these
conjugate values as roots.

8. These values are not necessarily all distinct; thus, if
we have x=\/a+\/5+\/a—\/3

this expression is not changed when we change the sign of
vb.




8 FAMOUS PROBLEMS.

9, If x is an arbitrary quantity and we form the poly
nomial

F)=(x—x)(x—xg) ... (x— Xgm)s

F (x) =0 is clearly an equation having as roots these con-
jugate values., It is of degree 2™, but may have equal
roots (8).

The coefficients of the polynomial F (x) arranged with respect
to x are rational.

For let us change the sign of one of the square roots ; this
will permute two roots, say x, and x,, since the roots of
F (x) =0 are precisely all the conjugate values. As these
roots enter F (x) only under the form of the product

(x —x)) (x — %),
we merely change the order of the factors of F(x). Hence
the polynomial is not changed.
F (x) remains, then, invariable when we change the sign of
any one of the square roots ; it therefore contains only their
squares ; and hence F (x) has only rational coefficients.

10. When any one of the conjugate uolues satisfies a given
equation with rational coefficients, f (x) =0, the same is true of
allythe others.

f (x) is not necessarily equal to F (x), and may admit other
roots besides the x/s. 1

Let x, =a -+ 8 +/Q be one of the conjugate values ; VQ, a
term of order s ; « and 8 now depend only upon other terms
of order u and terms of lower order. There must, then, be a
conjugate value

X' =a—BVQ.

Let us now form the equation f(x;) =0. f(x,) may be put
into the normal form with respect to VQ,

() =A+BVQ;
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this expression can equal zero only when A and B are simul- :
taneously zero. Otherwise we should have

VR=- g 3
i.e., VQ could be expressed rationally as a function of terms
of order u and of terms of lower order contained in A and B,
which is contrary to the hypothesis of the independence of
all the square roots (4).

But we evidently have
f(u)=A—BVQ;

hence if f(x;) =0, so also f(x,") =0. Whence the following
proposition :

If x, satigfies the ogquation f(x) =0, the same is trus of all
the conjugate values derived from x, by changing the signs of
the roots of order .

The proof for the other conjugate values is obtained in an
analogous manner. Suppose, for example, as may be done
without affecting the generality of the reasoning, that the
expression x, depends on only two terms of order s, v/Q and
VQ'. f(x,) may be reduced to the following normal form :

@. fx)=p+qVQ+rVQ+svQ - VQ'=0.

If x, depended on more than two terms of order 4, we should
only have to add to the preceding expression a greater num-
ber of terms of analogous structure. .

Equation (a) is possible only when we have separately

® p=0, q=0, r=0, s=0.

Otherwise vQ and +/Q' would be connected by a rational
relation, coutrary to our hypothesis.

Let now VR, VR',...be the terms of order p—l on
which x, depends ; they ocour in p, q, r, 8; then can the
quantities p, g, r, 8, in which they occur, be reduced to the



10 FAMOUS PROBLEMS.

normal form with respect to VR and VR'; and if, for the
sake of simplicity, we take only two quantities, VR and VR,

* we have

© P="1+M\/ﬁ+m'\/§}+h\/ﬁ-‘/ﬁ'=
and three analogous equations for q, r, s.

The hypothesis, already used several times, of the inde-
pendence of the roots, furnishes the equations

(@) k=0, A=0, a=0, v=0.

Hence equations (¢) and consequently f(x) =0 are satisfied
when for x, we substitute the conjugate valnes deduced by
changing the signs of VR and VR'.

Therefore the equation f(x) =0 is also satisfied by all the
conjugate values deduced from x, by changing the signs of the
roots of order p— 1. )

The same reasoning is applicable to the terms of order
p—2, p—3, ... and our theorem is completely proved.

11. We have so far considered two equations

F(x)=0 and f(x)=0.
Both have rational coefficients and contain the x’s as roots.
F (x) is of degree 2™ and may have multiple roots ; f(x) may
have other roots besides the x’s. We now introduce a third
equation, ¢ (x) =0, defined as the equation of lowest degree,
with rational coefficients, admitting the root x; and conse- .
quently all the x/s (10).

12. PropErTiES OF THE EQUATION ¢ (x) =0.

L ¢ (x)=0 is an irreducible equation, i.., ¢ (x) cannot be
resolved into two rational polynomial factors. This irreduci-
bility is due to the hypothesis that ¢ (x)=10 is the rational
equation of lowest degree satisfied by the x/’s.

For if we had :
() =¥ () x (s
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then ¢ (x,) =0 would require either y (x;) =0, or x (x;) =0,
or both. But since these equations are satisfied by ail the
conjugate values (10), ¢ (x) =0 would not then be the equa-
tion of lowest degree satistied by the x/s.

IL. ¢ (x) =0 has no multiple roots. Otherwise ¢ (x) could
be decomposed into rational factors by the well-known meth-
ods of Algebra, and ¢ (x) = 0 would not be irreducible. ‘

III. ¢ (x)=0 has no other roots than the xs. Otherwise
F (x) and ¢ (x) would admit & highest common divisar, which
could be determined rationally. We could then decompose
¢ (x) into rational factors, and ¢ (x) would not be irreducible.

IV. Let M be the number of x’s which have distinet values,
and let

Xyy Xgy « » o Xy

be these quantities. We shall then have

P (X)=C(x—x) (X—%g) « 0. (Xx— xp)-

For ¢ (x) =0 is satisfied by the quantities x, and it has no
maultiple roots. The polynomial ¢ (x) is then determined save
for a constant factor whose value has no effect upon ¢ (x) =0

V. ¢ (x)=0 is the only irreducible equation with rational -
coefficients satisfied by the x’s. For if f(x) =0 were another -
rational irreducible equation satisfied by x, and consequently
by the x’s, f (x) would be divisible by ¢ (x) and therefore
would not be irreduecible.

By reason of the five properties of ¢ (x)=0 t.hus estab-
lished, we may designate this equation, in short, as the irre-
ducible equation satisfied by the x,’s.

18. Let us now compare F (x) and ¢ (x). These two poly-
nomials have the x's as their only roots, and ¢ (x) has no
multiple roots. F (x) is, then, divisible by ¢ (x) ; that is,

F(x)=F,(x) ¢(x).
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Fy (x) necessarily has rational coefficients, sinee it is the quo-
tient obtained by dividing F (x) by ¢ (x). If Fy(x)is not a
constant it admits roots belonging to F(x); and admitting
one it admits all the x’s (10). Hence F, (x) is also divisible

by & (x), and
= Fu (00 = Fa () $ (.

If F,(x) is not a constant the same reasoning still holds, the
degree of the quotient being lowered by each operation.
Hence at the end of a limited number of divisions we reach
an equation of the form

Foo1(x)=C; ¢ (%),
F(x)=Cy-[¢ (0]

The polynomial F (x) is then a power of the polynomial of
minimum degree ¢ (x), except for a constant factor.

14. We can now determine the degree M of ¢(x). F(x)
is of degree 2™; further, it is the »th power of ¢ (x). Hence
2=y -M.

Therefore M is also a power of 2 and we obtain the following
theorem :

The degree of the srreducible equation satisfled by an expres-
sion composed of sguare roots only is always a power of 2.

15. -Bince, on the other hand, there is only one irreducible
equation satisfied by all the x’s (12, V.), we have the converse
theorem :

If an irreducible equation is not of degree 2, it camnot be
solved by square roots. :

and for F (x),



