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PREFACE

The Oxford University Computing Laboratory had its first Summer School,
in collaboration with the Delegacy for Extra-Mural Studies, in September
1960. Some eighty representatives of government, industry, universities and
technical colleges attended a two-week course on computational methods in
linear algebra and differential equations. The material was rather intro-
ductory, but the success of the school was sufficiently encouraging to warrant
a further venture in 1961.

We decided to concentrate on differential equations, and to try to supple- 'f': =
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ment lectures on general techniques with discussion of some difficult
particular problems, especially involving partial differential equations, which
.are the everyday concern of certain government, industrial and research
departments. I felt that my colleague Dr. D. F. Mayers and myself could
- cover reasonably the topics of .ordinary differential equations, integral
equations, and an introduction to partial differential equations, but that
lectures on practical problems in partial differential equations should be
given by those who are actually solving them, 1

My requests for assistance met with prompt and very generous response.
Dr. J. Corner (Atomic Weapons Research Establishment, Aldermaston) was
glad to “have a platform” for the dissemination of recently declassified work
of his department, and Dr. J. Howlett (United Kingdom Atomic Energy
Authority, Harwell) also demonstrated his enthusiasm for co-operation
between university and industry. In fact Howlett and Dr. J. Armstrong
(A.W.R.E.) helped in the construction of the programme, particularly for the
last part of the course.

I subsequently enlisted the willing help of Dr. J. Maccoll (War Office,
Fort Halstead), the Meteorological Office (Bracknell), the Central Electricity
Generating Board (London), the Computing Unit of London University,
and Dr. H. Motz (Oxford University Engineering Laboratory), and the final
programme listed the following 17 lecturers:

A.W.R.E. (Aldermaston): A. E. Glennie, N. E. Hoskin, B. W. Pearson,

L. H. Underhill, L. M. Russell, J. B, Parker;

U.K.AEA. (Harwell): M. J. D. Powell, A. R. Curtis, I. C. Pyle; (Win-

frith): I. C. Pull;

W.O. (Fort Halstead): D. S. Butler;

C.E.G.B. (London): Miss J. E. Walsh;
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M.O. (Bracknell): E. nghtufg,

London University: R. A. Buckiaghini,

0.U. Engineering Laboratory: H. Motz;

0.U. Computing Laboratory: L. Fox, D. F. Mayers.

So far this was just a course of lectures, but then Motz and Howlett sug-
gested that the material should be published, and Captain I. R. Maxwell
routed a very reluctant editor with the promise of publication only four or
five months after receipt of copy. Again there was no hitch. All the manu-
scripts were produced by the date requested, and proofs began to arrive on
the editorial desk almost before the expiration of the last breath of relief for
the ending of a successful course. .

The material of the first three parts covers the numerical solution of
ordinary differential equations, integral equations, and partial differential
equations of quasi-linear form. We have tried to include, either fully, briefly
or by reference, all the important known facts and techniques, and have
indicated what is not known, what we would very much like to know, and
what current research is in progress. Throughout we have kept the electronic
computing machine firmly in mind, but noting that the importance of
numerical analysis has increased, rather than declined, with the advent of
this instrument. Most of the techniques are therefore evaluated from the
standpoints of accuracy, convergence and stability {in the various senses of
these terms) as well as ease of coding and convenience of machine
computation.

The material is fairly advanced, in the sense that we have tried to reach
here the frontiers of knowledge in the relevant fields, but the style of writing
is not that of professional mathematicians. We have written for scientists
who have problems to solve, and who want to know what methods exist, why
and in what circumstances some are better than others, and how to adapt and -
develop techniques for new problems. The mathematics is by no means
ignored, but long and difficult proofs, for instance of the convergence of
finite-difference processes to the true solution, are often sketched and not
given, except by reference, in great and rigorous detail. The budding numeri-
cal analysist, however, should also benefit from this book, and will certainly
find some topics for valuable research. The first three parts, in fact, could be
used not only by practical men but also by students, though a preliminary
elementary course would assist the reading.

The last part, on practical problems, uses and develops the techniques
described earlier for the treatment of problems of the greatest difficulty and
complexity, which tax not only the best machines but also the best brains.
Much of this work is very new, containing frequent reference to “recent
unpublished work™. The first 300 pages, in contrast, are largely expository,
though we bave summarized the recent literature and presented in new ways
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some older results and methods, and seme.of the work on integral equations
is new.

The expository sections include due—owrrversions of some of the material
found in previous books, particularly those by Collatz (Numerical Solution
of Differential Equations, English transiation by P. G. Williams, Springer,
1960), Milne (Numerical Solution of Differential Equations, Wiley, 1953),
Richtmyer (Difference Methods for Initial-value Problems, Interscience,
1957) and Forsythe and Wasow (Finite-difference Methods for Partial
Differential Equations, Wiley, 1960). Generally we have concentrated a
little more than these authors on practical and computational details, a little
less on rigorous analysis, and we have learnt much from all of them. I hope
that our selection of topics will prove to be soundly based, that at least some
of our readers will be stimulated to study the more advanced parts of these
and other texts, and that, through personal defect and shortage of time, the
number of mistakes in fact and principle will not be prohibitively large.

I am deeply indebted to all the lecturers, and particularly to my colleague
Dr. Mayers, who bore with me the brunt of the first week’s lecturing; to the
captive audience, who contributed to this book in no small measure both by
silent and spoken interest; to the Extra-Mural Delegacy, who captured the
audience; to my secretary, Miss Olive Moon, who typed with great accuracy
some two-thirds of the text from manuscript which nobody else could read;
and to the Pergamon Press, who fulfilled their function with uncommon skill,

Oxford L. Fox
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CHAPTER 1

ORDINARY DIFFERENTIAL EQUATIONS
AND FINITE DIFFERENCES

Introduction
1. There is no single numerical method which is applicable to every

differential equation, or even to every ordinary differential equation, or which

is “best possible” for every member of even the much smaller class of
ordinary linear equations. The field is very large, and for the most economic
use of our computing machine, coupled with the necessity for producing
accurate answers, we need a variety of methods, each appropriate to its
particular and rather small class of problems. This needs emphasis, for
example because many computing machines have & single "M@gﬁne

for ordinary differential equations, of which the most popular is a Runge< |y &

Kutta technique, and there is a tendency, certainly among the less experienced, -
to use this routine on problems for which better methods are available. Here
we shall discuss a variety of methods, for ordinary and partial differential
equations and integral eqnatlons, pointing out their rupethvc\ments and
demerits from the points of view of speed, convenience and accuracy.. ;»»;',‘

By “accuracy” we mean the difference between the true solution of the
problem and our computed approximation, and our ajm is to limit the
discrepancy to the amount justified in the particular context, and to know that

this has been achieved. ‘“‘Speed” and “convenience” gre more difficult to .

define. They include both the human programming time and the machine

~

computing time, and the latter will depend among other things on the size S
of its store, and even of its high-speed store relative to the less accessible 4 v\~

“backing store”. Criteria of this kind will therefore vary from one individual
to another, and from one machine to another, but our comments should
assist in the making of any particular decision.
i —-2. The large variety of possible problems makes it difficult to produce a
useful classification. For ordinary differential equations the linear case has
simplifications lacking in the non-linear case, notably in the possibility of
“superposition” of partial solutions, for example as a linear combination of
particular integrals and complementary solutions. But other factors may
have greater importance, for example the “associated conditions™, which are
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generally equal in number to the order of the differential equation, and which
are necessary to provide a unique solution. If these are specified at a single
value of the independent variable we have an “initial-value” problem, whereas
if they are shared among two or more points in a given range we have a
“boundary-value” problem. A combination of differential equations and
associated conditions will be called a differential system, and a non-linear
initial-value system may in certain cases involve less computation and
fewer storage problems than a linear boundary-value system.

The actual form of the equation is another important consideration. For
example a non-linear initial system with an equation like

y' =f(x, y), €Y

which is linear in its second derivative and which lacks a first derivative, is
more easily and accurately solved, by finite-difference methods, than the
non-linear

yy' +siny’ = f(x, y), @

for which reduction to simultaneous first-order equations and the use of
Runge-Kutta methods is probably preferable.

Finally the form of the solution, and in particular its asymptotic behaviour
in an infinite range of the independent variable, will often dictate the choice
of method. Here we are concerned with the problem of stability, to ensure
that our method produces no *“‘spurious solutions” which, introduced perhaps
through our inability to6 work with an infinite number of figures, may grow
without bound and “swamp” the true solution.

Such considerations for ordinary differential equations apply also to the
numerical treatment of partial differential equations and integral equations,
and other special points will be introduced in the appropriate context.

Finite differences

3. Most methods of solution assume that the wanted function can be
represented in a specified range, and to a sufficient degree of accuracy,
cither by a single polynomial, which might be a truncated Chebyshev series,
or by a set of smoothly interlacing polynomials, which might be the truncated
Taylor’s series with origins at the successive pivotal points of the range,
or the polynomial which passes through a certain number of selected pivotal
points.

All finite-difference formulae are based on polynomial approximation,
and give exact results if the function concerned is a polynomial. In other cases
the formulae are approximations, and are usually written in the form of
infinite series of differences. It is necessary either that the series should
converge, or that the error caused by truncation after a certain number of
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terms should be suitably small. Before discussing this we give some formulae
which will be needed in applications.
" 4. We use the now standard notations

Ayr=yr+1—'yr, Vyr=yr"yr—1
5yr =yr+{—yr—i9 I‘yr=i'(yr+§ +yr—-})

where A, V, § and p are the operations of forward differencing, backward
differencing, central differencing and averaging. Also we have

€)

Eyr=yr+19 h= r+1 T Xps yr=y(xr: (4)
where E is the operation of displacement through interval A, the distance
between”successive pivotal points x,,, and x,, here assumed to be constant.
The averaging operator is needed because the values y,., and V-4 do not
appear in the table of values, and the odd central differences §***!y, are
similarly lacking. On the other hand

”6yr = 6(”'.}’1-) = i(ayr#} + ‘Syr—-i-) = %(Ayr + Vyr)a (5)

of which both terms are present in the difference table.

For most purposes the operators can be manipulated with ordinary
algebraic rules, and used formally to produce finite-difference expressions
for various purposes. For example we can write E = 1 + A, and

Efy, = y(x, + ph) = (L + A)Py,= [1 + pA + (g)Az + ... 00,
=y + pAp) + (lz’)A’y, +o., ©)

a series of forward differences of y,. This gives a finite-difference formula for
the calculation of y(x, + ph) in the form of an infinite series, which termi-
nates if p is an integer, giving the corresponding pivotal yalue, or if A%, =0
for all s greater than a certain integer #, in which case y(x) is'a polynomial of
degree n.

We can also record the operational identities

0=E*~E% pu={E*+E7Y), p’=1+18, )]
so that, for example,
L= =p(l + 36 = p(l — $5° + 1350* — .. ). ®

This provides a method of introducing the averaging operator, which is
necessary in expressions involving u6**'y, and pé%y, ., respectively the odd
central differences at pivotal points and the even central differences at
“half-way” points.



6 ORDINARY DIFFERENTIAL EQUATIONS (1, $4-6
We also use the operator for differentiation, defined by
S Dy=dyin, ’ ©)

and note the formal equivalence of
2

h
Eyr=Yr+1=yr+hy; _yr

bl
hz
=(1+th-2-;D’+ ...)y,=e‘”y,, (10)
so that :
E=¢", hRD=InE. (1

b N
The replaéeﬁrgent of E by its various difference equivalents will give formulae
for derivatives.
Finally, we z%gbmﬂe the operation of indefinite integration with D™!
that for a definite integral we write W g
4 .

b
I ydx=D"!(y, ~ y.) (12)

and suitable formulae can be cbtained by expressing D~! in terms of
differences.
Finite-difference formulae

5. We give now the first few terms in various formulae which will be
needed in applications. For mterpolatxon we have the forward-difference
formula bk

o+ 0= yot 8y, + (G804 o 19

which is used near the end of a range where central differences are not
tabulat and the Everett central-difference formula

IS
y(x + phy= v + P¥ri1 + Ei(P)6%y, + Ef(9)0%y,41 +
+ E(p)6*y, + Ef()8*ypus + ..., (4

where g = 1 — p and the Everett coefficients E,, are known polynomials in
p. These coefficients, and similar quantities involved in mterpolatlon for-
mulae, are tabulated, for example in N.A.O. (1956).

6. For our present purpese formulae for derivatives and integrals are of
more general interest. For first derivatives at pivotal points we have

hyr=(A—3A% + 3A% - ..y, 1
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which uses the forWard differences at the relevant point, and

hy,=(A+3A% - 3A° +.. )y,-y. (16)

which uses the forward differences at the previ(zs point. This idea can be
extended, but where possible we would use the"céhtral-difference formula

A by, = (43—~ 3u® + Sgpd® — .. )y, (n

With central differences we have also a simple and useful formula for the
derivative at a half-way point, given by

hyres =10 = 460 + 5350° — .. Wrese (18)
Similarly for second derivatives we have the forward-difference formulae
Ry = (A2 — A3 + HA* — 5A% + .. )y, (19)
hy; = (A — 5A* + 154° ~ .. )y, (20)
and the more valuable central-difference expre;sions
By; = (8 = 158* + 5'56° — .. )yn @b
B yray = (> — 2ud* + Sidend® — .. Iypeye (22)

Formulae for higher derivatives will be given when required.

7. For definite integrals, between two pivotal points, we have the “closed”
formulae, which' use the integrand at both end points, and the “open” for-
mulae, which omit one or bofh 2ha points, and which have important
applications in the’ “predictor-corrector” methods for solving differential
- equations. For example,

Xr+t
j ydx =h(1 +3iV+ 5V 4.y, (23)

is a typical open formula, and the corresponding closed formula is
w n J‘ Xr41

Xr

ydx=h(1 =3V — 5V = . Dy, 0 24)

Similar formulae exist for integration over more than one 'interval, for
example

J' yAdx=hQ2 +iVZ + V3 + 2V + . Dyess 25
Xp+2
and j. ydx =h2—2V+4iV: -~V + )y, un. (26)
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h %L ke .
In these formulae the terms involve differences at one point only, and we
have corresponding central-difference formulae such as

Xre+1
_" ydx = h(u— dou® + Mo = . Wpape @D
Xp
) xr+ 13
and f y dx = K1+ 2587~ hbd* + .. Iy, 28)
Xr-%
for integration over one interval, and the useful
J ’ ydx = 2h(1 + 182 — 1150* + .. )y, (29)
Xr-1

for integration over two intervals.

These formulae can be summed to cover an extended range, and thereby g,
become “full” quadrature formulae. They can then be written as simple
weighted s of the in e'g%%dplus a correction in terms of differences at the
two end points. For example we have

Xn
fydx=h{(%y,+y,+1+---+y,-1+-i-y,.)+
+ (=Y = AV — )y + (A — AT+ L)), (30)

the Gregory formula which uses *“sloping-difference” corrections, and

J‘ ydx: h{('%'yr+yr+t + oo F Yy +%yn)+
Xp
+ (—-117”6 + 712101‘63 e ')(yn - yr)}’ (31)

the corresponding central-difference formula. Similarly, for integration
between half-way points, we have

Xn+ %2
f Vydx=h{(.Vr+'yr+l+ o +yn—1+yn)+
+ (‘2%‘6— ‘IIZO 3+ "')(yn+4}_yr—-})}' (32)

Formulae (30) and (31) represent the “tral;gum rule” plus a correction. AP
We can similarly obtain Simpson’s rule with correction, used for integrating
over an even number of intervals, by expressing the differences up to °
in (29) in terms of pivotal values, obtaining -gw\f;

*xr+1

h
J y = '3_(yr—l+4yr+yr+l)_'91—0h54yr+ ey (33)
Xp-1
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which may be used for integrating differential equ&tions, and

Xr+n h
J ydx= 3 Oron+4Yns1 + 2V izt oo +4Vpineg + Veaw) —

Xp-n

- '9‘15’!(64}',.:,”.1 + 54yr-n+3 +...+ 6‘Yr+n—3 + 64Yr+;-1) + ..., (34)

which is a full quadrature formula.

8. In all these integration formulae the result is expressed as a combination
of pivotal values of the integrand, together with a correction involving series
of differences of the integrand. By different: agon we also obtain a relation
between pivotal values and derivatives, with a chrTection mvolvmg differences
of the derivative. For example equation (28), treated in this way, can be
written as 24 e

Vrrg = Yooy = 0y, = WL + 2507 — k0% + .. )y (35)
The inversion and mtroducnon of y in the form
b ﬁ\ k’
BN s (2507 — 5330+ ) by (36)

will ultimately produce formula (17), and to this extent the formulae for
integration and those for differentiation are effectively equivalent.

There are, however, important differences in the way we express the
correcting terms. For example we can produce from (27) the form

Yesr = Ve =3$h(rex + y7) + (—1508® + Fsud* — .. Ihyees (D
which might be used as a rather late corrector in a predictor-corrector method.
Similarly (24) gives

Yer1 = Yr=3b(rss + ¥ + (=Y + . Oy, (38)

which can be used, at an earlier stage, for the same purpose. But by opera-
ting with x4 in equation (18), and expressing p on the right in terms of 8, we

find
Yetr = Ve =300 + V) + (= $20° + 130° — .. co Wesp (39)

and the “correction” on the right is here given in terms of the function rather
than its derivative. Such a formula is more valuable for the “deferred-
correction” methods of solving differential equations, in which the derivatives
of the required function need never be recorded and often not even calculated.

Similar remarks connect double integrals with formulae for the second
derivative. For example, (21) gives

By = 5%, + (~7ht* + 5% — .. )y (40)
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42
a useful “deferred correction formula™, but we can also invert it to find

8y, = (1 + 6% — z3s8* + .. Jh?y;, i (C3))

which can be used as a “corrector”, particularly for second-order differential -
equations in which the first derivative is absent. '

Lagrangian formalae and rounding e%s .

9. If we are given, or have produ #d in some way, a table of values of a
partimﬂ:: »(x), and we wish to interpolate, differentiate, or integrate, the
diffetidrice table gives valuable informatio’ﬂ',“for example about possible errors
in the pivotal values, the adequacy of polynomial representation at this
particular interval, the number BF differences tBaf should. be used in each
particular formula, and the propinquity of a possible singularity in y(x) or
one of its derivatives. kA« %

The storage of the difference table in the computing machine, however, may
be prohibﬁé%’by the size of the total store, and of the problem. Moreover,
automatic assessment of a given situation is by no means trivial. For this
reason it is not uncommon, particularly in automatic computation, to decide
in advance the orders of differences which can safely be neglected, and to
express all differences retained in terms of pivotal values. Formula (21), for
example, may be written as

h-zy:-’:yri-l _2yr+.Vr—1 _ﬁ54yr+ cees (42)
or as

Wy! = f5(— Yoz + 16yp0q — 30y, + 16y, 3 — yp—2) + F60°p, + ..., (43)

corresponding respectively to the neglect of differences higher than the
second and fourth. A%” %y

Such formulae are called Lagrangian formulae, and any decision about
their suitable order is usually supported by a priori knowledge or experi-
mental computation, or by a posteriori consideration of some kind, such as
reduction of the interval and checks for consistency. , '

10. The Lagrangian formulae*ife also valuable in one other respect, that
of assessing the possible maximum error in any finite-difference result due to
possible rounding errors in the pivotal values, assuming that these errofs’do
not affect the negligibility of higher-order terms. For example, if each
pivotal value has a possible half-unit error in (43), the maxi possible
error in A%y! is half the sum of the absolute values of the coefficients (since
the errors may have either sign), which is here about 8/3 units. The same re-
sult is obtained in this case by adding together the maximum error in each
difference in the corresponding formula (21), keeping only 4% and 4% In
-general, however, the latter method may give an ovew_stix:lrate, unless we pay

: dau?



