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Preface to the first edition

The origin of this book was a sixteen-lecture course that each of us
has given over the last several years to final-year Oxford undergraduate
mathematicians; and its development owes much to the suggestions of
some of our colleagues that the subject matter could readily be taught
somewhat earlier as a companion course to one introducing the theory
of partial differential equations. On the other hand, we have used much
of the same material in teaching a one-year Master’s course on mathe-
matical modelling and numerical analysis. These two influences have
guided our choice of topics and the level and manner of presentation. -

Thus we concentrate on finite difference methods and their application
to standard model problems. This allows the methods to be couched in
simple terms while at the same time treating such concepts as stability
and convergence with a reasonable degree of mathematical rigour. In a
more advanced text, or one with greater emphasis on the finite element
method, it would have been natural and convenient to use standard
Sobolev space norms. We have avoided this temptation and used only
discrete norms, specifically the maximum and the I norms. There are
several reasons for this decision. Firstly, of course, it is consistent with
an aim of demanding the minimum in prerequisites — of analysis, of PDE
theory, or of computing — so allowing the book to be used as a text in
an early undergraduate course and for teaching scientists and engineers
as well as mathematicians. '

Equally importantly though, the decision fits in with our widespread
use of discrete maximum principles in analysing methods for elliptic and
parabolic problems, our treatment of discrete energy methods and con-
servation principles, and the study of discrete Fourier modes on finite
domains. We believe that treating all these ideas at a purely discrete
level helps to strengthen the student’s understanding of these important
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mathematical tools. At the same time this is a very practical approach,
and it encourages the interpretation of difference schemes as direct mod-
els of physical principles and phenomena: all calculations are, after all,
carried out on a finite grid, and practical computations are checked for
stability, etc. at the discrete level. Moreover, interpreting a difference
scheme’s effect on the Fourier modes that can be represented on the
mesh, in terms of the damping and dispersion in one time step is often
of greater value than considering the truncation error, which exemplifies
the second justification of our approach.

However, the limiting process as a typical mesh parameter h tends to
zero is vital to a proper understanding of numerical methods for partial
differential equations. For example, if U™ is a discrete approximation
at time level n and evolution through a time step At is represented as
Unt! = CpU™, many students find great difficulty in distinguishing the
limiting process when n — 0o on a fixed mesh and with fixed At, from
that in which n — oo with nAt fixed and h, At — 0. Both processes
are of great practical importance: the former is related to the many
iterative procedures that have been developed for solving the discrete
equations approximating steady state problems by using the analogy
of time stepping the unsteady problem; and understanding the latter is
crucial to avoiding instability when choosing methods for approximating
the unsteady problems themselves. The notions of uniform bounds and
uniform convergence lie at the heart of the matter; and, of course, it is
easier to deal with these by using norms which do not themselves depend
on h. However, as shown for example by Palencia and Sanz-Serna,! a
rigorous theory can be based on the use of discrete norms and this lies
behind the approach we have adopted. It means that concepts such as
well-posedness have to be rather carefully defined; but we believe the
slight awkwardness entailed here is more than compensated for by the
practical and pedagogical advantages pointed out above.

The ordering of the topics is deliberate and reflects the above con-
cerns. We start with parabolic problems, which are both the simplest
to approximate and analyse and also of widest utility. Through the
addition of convection to the diffusion operator, this leads naturally to
the study of hyperbolic problems. It is only after both these cases have
been explored in some detail that, in Chapter 5, we present a careful
treatment of the concepts of consistency, convergence and stability for
evolutionary problems. The final two chapters are devoted respectively

1 Palencia, C. and Sanz—Serna, J. M. (1984), An extension of the Lax—Richtmyer
theory, Numer. Math. 44 (2), 279-283.
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to the discretisation of elliptic problems, with a brief introduction to
finite element methods, and to the iterative solution of the resulting
algebraic equations; with the strong relationship between the latter and
the solution of parabolic problems, the loop of linked topics is complete.
In all cases, we present only a small number of methods, each of which is
thoroughly analysed and whose practical utility we can attest to. Indeed,
we have taken as a theme for the book that all the model problems and
the methods used to approximate them are simple but generic.

Exercises of varying difficulty are given at the end of each chapter; they
complete, extend or merely illustrate the text. They are all analytical in
character, so the whole book could be used for a course which is purely
theoretical. However, numerical analysis has very practical objectives, so
there are many numerical illustrations of the methods given in the text;
and further numerical experiments can readily be generated for students
by following these examples. Computing facilities and practices develop
so rapidly that we believe this open-ended approach is preferable to
giving explicit practical exercises.

We have referred to the relevant literature in two ways. Where key
ideas are introduced in the text and they are associated with specific
original publications, full references are given in footnotes — as earlier in
this Preface. In addition, at the end of each chapter we have included a
brief section entitled ‘Bibliographic notes and recommended reading’ and
the accumulated references are given at the end of the book. Neither
of these sets of references is intended to be comprehensive, but they
should enable interested students to pursue further their studies of the
subject. We have, of course, been greatly guided and influenced by the
treatment of evolutionary problems in Richtmyer and Morton (1967); in
a sense the present book can be regarded as both introductory to and
complementary to that text.

We are grateful to several of our colleagues for reading and comment-
ing on early versions of the book (with Endre Siili’s remarks being par-
ticularly helpful) and to many of our students for checking the exercises.
The care and patience of our secretaries Jane Ellory and Joan Himpson
over the long period of the book’s development have above all made its
completion possible. '



Preface to the second edition

In the ten years since the first edition of this book was published, the
numerical solution of PDEs has moved forward in many ways. But when
we sought views on the main changes that should be made for this second
edition, the general response was that we should not change the main
thrust of the book or make very substantial changes. We therefore aimed
to limit ourselves to adding no more than 10%-20% of new material and
removing rather little of the original text: in the event, the book has
increased by some 23%.

Finite difference methods remain the starting point for introducing
most people to the solution of PDEs, both theoretically and as a tool for
solving practical problems. So they still form the core of the book. But
of course finite element methods dominate the elliptic equation scene,
and finite volume methods are the preferred approach to the approxi-
mation of many hyperbolic problems. Moreover, the latter formulation
also forms a valuable bridge between the two main methodologies. Thus
we have introduced a new section on this topic in Chapter 4; and this
has also enabled us to reinterpret standard difference schemes such as
the Lax—Wendroff method and the box scheme in this way, and hence
for example show how they are simply extended to nonuniform meshes.
In addition, the finite element section in Chapter 6 has been followed by
a new section on convection—diffusion problems: this covers both finite
difference and finite element schemes and leads to the introduction of
Petrov—Galerkin methods.

The theoretical framework for finite difference methods has been well
established now for some time and has needed little revision. However,
over the last few years there has been greater interaction between meth-
ods to approximate ODEs and those for PDEs, and we have responded to
this stimulus in several ways. Firstly, the growing interest in applying
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symplectic methods to Hamiltonian ODE systems, and extending the
approach to PDEs, has led to our including a section on this topic in
Chapter 4 and applying the ideas to the analysis of the staggered leap—
frog scheme used to approximate the system wave equation. More gen-
erally, the revived interest in the method of lines approach has prompted
a complete redraft of the section on the energy method of stability anal-
ysis in Chapter 5, with important improvements in overall coherence
as well as in the analysis of particular cases. In that chapter, too, is
a new section on modified equation analysis: this technique was intro-
duced thirty years ago, but improved interpretations of the approach for
such as the box scheme have encouraged a reassessment of its position;
moreover, it is again the case that its use for ODE approximations has
both led to a strengthening of its analysis and a wider appreciation of
its importance.

Much greater changes to our field have occurred in the practical appli-
cation of the methods we have described. And, as we continue to have
as our aim that the methods presented should properly represent and
introduce what is used in practice, we have tried to reflect these changes
in this new edition. In particular, there has been a huge improvement
in methods for the iterative solution of large systems of algebraic equa-
tions. This has led to a much greater use of implicit methods for time-
dependent problems, the widespread replacement of direct methods by
iterative methods in finite element modelling of elliptic problems, and a
closer interaction between the methods used for the two problem types.
The emphasis of Chapter 7 has therefore been changed and two major
sections added. These introduce the key topics of multigrid methods and
conjugate gradient methods, which have together been largely responsi-
ble for these changes in practical computations.

We gave serious consideration to the possibility of including a num-
ber of MATLAB programs implementing and illustrating some of the key
methods. However, when we considered how very much more powerful
both personal computers and their software have become over the last
ten years, we realised that such material would soon be considered out-
moded and have therefore left this aspect of the book unchanged. We
have also dealt with references to the literature and bibliographic notes
in the same way as in the earlier edition: however, we have collected
both into the reference list at the end of the book.

Solutions to the exercises at the end of each chapter are available in the
form of ITEX files. Those involved in teaching courses in this area can
obtain copies, by email only, by applying to solutions@cambridge.org.
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We are grateful to all those readers who have informed us of errors in
the first edition. We hope we have corrected all of these and not intro-
duced too many new ones. Once again we are grateful to our colleagues
for reading and commenting on the new material.
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Introduction

Partial differential equations (PDEs) form the basis of very many math-
ematical models of physical, chemical and biological phenomena, and
more recently their use has spread into economics, financial forecast-
ing, image processing and other fields. To investigate the predictions
of PDE models of such phenomena it is often necessary to approximate
their solution numerically, commonly in combination with the analysis of
simple special cases; while in some of the recent instances the numerical
models play an almost independent role.

Let us consider the design of an aircraft wing as shown in Fig. 1.1,
though several other examples would have served our purpose equally
well — such as the prediction of the weather, the effectiveness of pollutant
dispersal, the design of a jet engine or an internal combustion engine,

() (b)

Fig. 1.1. (a) A typical (inviscid) computational mesh around
an aerofoil cross-section; (b) a corresponding mesh on a wing
surface.
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the safety of a nuclear reactor, the exploration for and exploitation of
oil, and so on.

In steady flight, two important design factors for a wing are the lift
generated and the drag that is felt as a result of the flow of air past
the wing. In calculating these quantities for a proposed design we know
from boundary layer theory that, to a good approximation, there is
a thin boundary layer near the wing surface where viscous forces are
important and that outside this an inviscid flow can be assumed. Thus
near the wing, which we will assume is locally flat, we can model the
flow by

ou o%u Op
Usz Vo = /P 5= (1.1)

where u is the flow velocity in the direction of the tangential co-ordinate
z, y is the normal co-ordinate, v is the viscosity, p is the density and
» the pressure; we have here neglected the normal velocity. This is a
typical parabolic equation for u with (1/p)8p/8x treated as a forcing
term.

Away from the wing, considered just as a two-dimensional cross-
section, we can suppose the flow velocity to be inviscid and of the form
(Uoo + u,v) where u and v are small compared with the flow speed at
infinity, 4s in the z-direction. One can often assume that the flow is
irrotational so that we have

(1.2a)

then combining the conservation laws for mass and the z-component
of momentum, and retaining only first order quantities while assuming
homentropic flow, we can deduce the simple model

Su Ov
— 2 an— —— e
(1—MZ)5 + 5y = © (1.2b)

where M, is the Mach number at infinity, My, = uo /@oo, and ao is
the sound speed.

Clearly when the flow is subsonic so that M, < 1, the pair of equa-
tions (1.2a, b) are equivalent to the Cauchy-Riemann equations and the
system is elliptic. On the other hand for supersonic flow where M., > 1,
the system is equivalent to the one-dimensional wave equation and the
system is hyperbolic. Alternatively, if we operate on (1.2b) by 8/8z
and eliminate v by operating on (1.2a) by 8/8y, we either obtain an
equivalent to Laplace’s equation or the second order wave equation.
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Thus from this one situation we have extracted the three basic types
of partial differential equation: we could equally well have done so from
the other problem examples mentioned at the beginning. We know from
PDE theory that the analysis of these three types, what constitutes a
well-posed problem, what boundary conditions should be imposed and
the nature of possible solutions, all differ very markedly. This is also
true of their numerical solution and analysis.

In this book we shall concentrate on model problems of these three
types because their understanding is fundamental to that of many more
complicated systems. We shall consider methods, mainly finite differ-
ence methods and closely related finite volume methods, which can be
used for more practical, complicated problems, but can only be ana-
lysed as thoroughly as is necessary in simpler situations. In this way we
will be able to develop a rigorous analytical theory of such phenomena
as stability and convergence when finite difference meshes are refined.
Similarly, we can study in detail the speed of convergence of iterative
methods for solving the systems of algebraic equations generated by dif-
ference methods. And the results will be broadly applicable to practical
situations where precise analysis is not possible.

Although our emphasis will be on these separate equation types, we
must emphasise that in many practical situations they occur together,
in a system of equations. An example, which arises in very many appli-
cations, is the Euler—Poisson system: in two space dimensions and time
t, they involve the two components of velocity and the pressure already
introduced; then, using the more compact notation 8, for 8/t etc., they
take the form

Otu + ulzu + voyu + Ozp = 0
Osv + u0zv + vOyv + Oyp = 0
d2p + 82p = 0. (1.3)

Solving this system requires the combination of two very different tech-
niques: for the final elliptic equation for p one needs to use the techniques
described in Chapters 6 and 7 to solve a large system of simultaneous
algebraic equations; then its solution provides the driving force for the
first two hyperbolic equations, which can generally be solved by march-
ing forward in time using techniques described in Chapters 2 to 5. Such
a model typically arises when flow speeds are much lower than in aero-
dynamics, such as flow in a porous medium, like groundwater flow. The
two procedures need to be closely integrated to be effective and efficient.
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Fig. 1.2. A typical multi-aerofoil: (a) a general view; (b) a
detail of the mesh that might be needed for a Navier—Stokes
calculation. (Courtesy of DRA, Farnborough.)

Returning to our wing design example, however, it will be as well to
mention some of the practical complications that may arise. For a civil
aircraft most consideration can be given to its behaviour in steady flight
at its design speed; but, especially for a military aircraft, manoeuvrability
is important, which means that the flow will be unsteady and the equa-
tions time-dependent. Then, even for subsonic flow, the equations corre-
sponding to (1.2a, b) will be hyperbolic (in one time and two space vari-
ables), similar to but more complicated than the Euler-Poisson system
(1.3). Greater geometric complexity must also be taken into account:
the three-dimensional form of the wing must be taken into consideration
particularly for the flow near the tip and the junction with the aircraft
body; and at landing and take-off, the flaps are extended to give greater
lift at the slower speeds, so in cross-section it may appear as in Fig. 1.2.

In addition, rather than the smooth flow regimes which we have so
far implicitly assumed, one needs in practice to study such phenom-
ena as shocks, vortex sheets, turbulent wakes and their interactions.
Developments of the methods we shall study are used to model all
these situations but such topics are well beyond the scope of this book.
Present capabilities within the industry include the solution of approxi-
mations to the Reynolds-averaged Navier—Stokes equations for unsteady
viscous flow around a complete aircraft, such as that shown in Fig. 1.3.



