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Preface to the Second Edition

Since the first edition of this book there has been an active development of
extreme value theory. This is reflected both in the added material, and in the
increased number of references.

Substantial changes have been made on the material related to the von
Mises conditions, on the estimates of the speed of convergence of distribu-
tion, and in Chapter 5 on multivariate extremes. In particular, James Pick-
ands III’s proof of the representation theorem is included with the kind
permission of Pickands, for which I am grateful.

I'am also indebted to R.H. Berk, R. Mathar, R. Mucci, J. Tiago de Oliv-
eiraand I. Weissman, who pointed out errors in the book, and to M. Falk, L.
de Haan, R.D. Reiss, E. Seneta and W. Vervaat for their comments either
on the original book or on the new material.

JANOs GALAMBOS

Willow Grove, Pa.



Preface

The asymptotic theory of extreme order statistics provides in some cases
exact but in most cases approximate probabilistic models for random
quantities when the extremes govern the laws of interest (strength of
materials, floods, droughts, air pollution, failure of equipment, effects of
food additives, etc.). Therefore, a complicated situation can be replaced by
a comparatively simple asymptotic model if the basic conditions of the
actual situation are compatible with the assumptions of the model. In the
present book I describe all known asymptotic models. In addition to
finding the asymptotic distributions, both univariate and multivariate, I
also include results on the almost sure behavior of the extremes. Finally,
random sample sizes are treated and a special random size, the so-called
record times, is discussed in more detail. A short section of the last chapter
dealing with extremal processes is more mathematical than the rest of the
book and intended for the specialist only.

Let me stress a few points about the asymptotic theory of extremes. I
have mentioned that an asymptotic model may sometimes lead to the exact
stochastic description of a random phenomenon. Such cases occur when a
random quantity can be expressed as the minimum or maximum of the
quantities associated with an arbitrarily large subdivision (for example, the
strength of a sheet of a metal is the minimum of the strengths of the pieces
of the sheet). But whether a model is used as an exact solution or as an
approximation, its basic assumptions decide whether it is applicable in a
given problem. Therefore, if the conclusions for several models are the
same, each model contributes to the theory by showing that those conclu-
sions are applicable under different circumstances. One of the central
problems of the theory is whether the use of a classical extreme value
distribution is justified—that is, a distribution which can be obtained as
the limit distribution of a properly normalized extreme of independent and
identically distributed random variables. Several of the models of the book
give an affirmative answer to this question. In several other cases, however,

vii



viii PREFACE

limiting distributions are obtained that do not belong to the tl}ree classical
types. This is what Bayesian statisticians and reliability scientists expected
all along (and they actually used these distributions without appealing to
extreme value theory). I sincerely hope that these distributions will be
widely used in other fields as well.

One more point that is not encountered in most cases of applied
statistics comes up in the theory of extremes. Even if one can accept that
the basic random variables are independent and identically distributed,
one cannot make a decision on the population distribution by standard
statistical methods (goodness of fit tests). I give an example (Example
2.6.3) where, by usual statistical methods, both normality and lognormality
are acceptable but the decision in terms of extremes is significantly
different depending on the actual choice of one of the two mentioned
distributions. It follows that this choice has to be subjective (this is the
reason for two groups coming to opposite conclusions, even though they
had the same information).

The book is mathematically rigorous, but I have kept the applied
scientist in mind both in the selection of the material and in the explana-
tions of the mathematical conclusions through examples and remarks.
These remarks and examples should also make the book more attractive as
a graduate text. I hope, further, that the book will promote the existing
theory among applied scientists by giving them access to results that were
scattered in the mathematical literature. An additional aim was to bring
the theory together for the specialists in the field. The survey of the
literature at the end of each chapter and the extensive bibliography are for
these purposes.

The prerequisites for reading the book are minimal; they do not go
beyond basic calculus and basic probability theory. Some theorems of
probability theory (including expectations or integrals), which I did not
expect to have been covered in a basic course, are collected in Appendix I.
The only exception is the last section in Chapter 6, which is intended
mainly for the specialists. By the nature of the subject matter, some
familiarity with statistics and distribution functions is an advantage,
although I introduce all distributions used in the text. The book can be
used as a graduate text in any department where probability theory or
mathematical statistics are taught. It may also serve as a basis for a
nonmathematical course on the subject, in which case most proofs could
be dropped but their ideas presented through special cases (e.g., starting
with a simple class of population distributions). In a course, or at a first
reading, Chapter 4 can be skipped; Chapters 5 and 6 are not dependent on
it.

No books now in print cover the materials of any of Chapters 1 or 3-6.
The only overlap with existing monographs is Chapter 2, which is partial-



PREFACE ix

ly contained in the book by Gumbel (1958) and in the monograph of
de Haan (1970) (see the references). It should be added, however, that
Gumbel’s book has an applied rather than theoretical orientation. His
methods are not applicable when the restrictive assumptions of Chapter 2
are not valid.

Although many proofs are new here, the credit for the theory, as it is
known at present, is due to those scientists whose contributions raised it to
its current level. It is easy to unify and simplify proofs when the whole
material is collected at one place.

I did not have time to thank the many scientists individually who
responded to my requests and questions. My heartiest thanks go to them
all over the world. My particular thanks are due to those scientists who
apply extreme value theory and who so patiently discussed the problems
with me either in person or in letters.

I am indebted to Professor David G. Kendall, whom 1 proudly count
among my friends, for presenting my plan to John Wiley & Sons, Inc. I
should also like to thank Mrs. Mittie Davis for her skill and care in typing
the manuscript.

JANOS GALAMBOS

Willow Grove, Pennsylvania
March 1978



Notations and Conventions

X, X500 X, basic random vanables.

Z, maximum of X, X,,...,X,.

w, minimum of X, X,,...,X,.

F(x)=P(X<x) distribution function of X.

H,(x) distribution function of Z,.

L.(x) distribution function of W,.

a(F) inf{x: F(x)>0}.

W(F) sup{x: F(x)<l1}.

t>w(F) means ¢ < o(F) and t5w(F)

>a(F) means ¢ > a(F) and 1>a(F)

H(x) limit of H,(a,+ b,x) with some constants a, and
b,>0.

L(x) limit of L, (c,+d,x) with some constants ¢, and
d,>0.

Xin the rth order statistic of X, X,,...,X,. Thus X, <
Xy €...<X,.,and X, ., =W, and X,. , =2,

1 ’
>, i1 summation and product, respectively, from one to

k=1 k= the integer part of 1.

H, (x) defined at (11) onp. 53.

H, (x) defined at (13) on p. 53.

H; o(x) defined at (18) on p. 54.

L ,(x) defined at (28) on p. 58.

L, (x) defined at (30) on p. 58.

L o(x) defined at (35) on p. 59.

A or A€ the complement of the set A.

rLid. independent and identically distributed.

1.0. infinitely often.
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CHAPTER 1

Introduction: Estimates in the Unmivanate Case

We shall describe a number of situations where the extremes govern the
laws that interest us. Both practical and theoretical problems will be listed,
which will then be unified by a general mathematical model. Our aim is to
investigate this mathematical model and to describe our present stage of
knowledge about it under different sets of assumptions. The beauty of this
subject matter is that it leads us to the understanding of regularities of
extreme behavior—an expression that seems to contradict itself.

After the introduction of the mathematical model, the present chapter is
devoted to inequalities which involve the distribution of extremes in a set
of observations. Those inequalities serve two purposes. On one hand, they
may provide good bounds on the distribution of extremes for a given
number of observations without resorting to an asymptotic theory. On the
other hand, they will constitute some of the basic tools of the asymptotic
theory to be developed in later chapters. It should be emphasized that in
several situations, contrary to general belief, an asymptotic theory may
provide the exact model, while a fixed number of observations can be used

only as an approximation. The reader is referred to Section 1.2 for a
specific example.

1.1. PROBLEMS LEADING TO EXTREME
VALUES OF RANDOM VARIABLES

We now list a number of cases when a mathematical solution to the

problems involved is in terms of the largest or the smallest “measure-
ments.”

Natural disasters. Floods, heavy rains, extreme temperatures, extreme
atmospheric pressures, winds and other phenomena can' cause extensive
human and material loss, if society is unprepared for them. While such

1



2 INTRODUCTION TO THE UNIVARIATE CASE 1.1

disasters cannot be completely avoided, communities can take preventive
action to minimize their effects. In dams, dikes, canals, and other struc-
tures the choice of building materials and methods of architecture can take
some of these disasters into account. Engineering decisions that confront
such problems should be based on a very accurate theory, because inac-
curacies can be very expensive. For example, dams built at a huge expense
may not last long before collapsing.

Failure of a piece of equipment. Assume that a piece of equipment faiis
if one of its components fails. In other words, we consider only those of its
components, the failure of any one of which leads to a halt in its operation.
This is an extreme situation in the sense that the weakest component alone
makes the equipment fail. While this assumption may seema simplification,
the most general failure model of a complicated piece of equipment can be
reduced to this model. As a matter of fact, if one first considers groups of
components where the failure of a group results in the failure of the equip-

ment, then the weakest group of components with the assumed property ef-
fects the first failure of the equipment.

Service time. Consider a piece of equipment with large number of com-
ponents and assume that components can be serviced concurrently. Then the

time required for servicing the equipment is determined by that component
which requires the longest service.

Corrosion. We say that a surface with a large number of small pits fails
due to corrosion if any one of the pits penetrates through the thickness of
the surface. Initially the pits are of random depths, which increase in time

due to chemical corrosion. Again one extreme measurement, the deepest
pit, causes failure.

Breaking strength. An absolutely homogeneous material would break
under stress by a deterministic law. However, no material is absolutely
homogeneous; indeed, engineering experience shows that the breaking
strength of materials under identical production procedures varies widely.
The explanation is that each point, or at least each small area, has a
random strength, and thus varying amounts of force will be needed to

break the material at different points. Evidently the weakest point will
determine the strength of the whole material.

Air pollution. Air pollutant concentration is expressed in terms of
proportion of a specific pollutant in the air. Concentrations are recorded at
equal time intervals (present investigations are based on data obtained at



1.2 THE MATHEMATICAL MODEL 3

five-minute intervals), and the aim of society is to keep the largest
measurement below given limits.

Statistical samples. Observations are made on a given quantity; often
one would like to know how large or how small a measurement can be
expected.

Statistical estimators. After the collection of observations, the data are
used to calculate estimators of certain characteristics of the quantity under
observation. One would like to estimate these characteristics as accurately
as possible, but over- or underestimation is unavoidable. Of considerable
interest, therefore, is the investigation of the largest or the smallest estima-
tor.

These problems, though they do not exhaust the possibilities, indicate
that any successful theory of extremes unifies a great number of interesting
topics. The theory to be developed can also show the beauty of mathemati-
cal abstraction: a single language will speak to the engineer, the physicist,
the service person, the statistician, and others.

Further examples of fields for application of the theory will be spread in
the text and among the problems for solution. Problems leading to multi-
variate extremes are postponed until Chapter S.

1.2 THE MATHEMATICAL MODEL

In all the examples of the preceding section we were faced with a number
of random measurements X,,X,,..., X,, and the behavior of either

Z,=max(X,X,,...,X,)

or
W,=min(X,,X,,...,X,)

was of interest.

As a matter of fact, in terms of floods, X; may denote the water level of
a given river on day j, “day 1” being, for example, the day of publication
of this book. Since we do not know the water levels in advance, they are
random to us. A question such as, “How likely is it that in this century the
water level of our river remains below 230 cm?” is evidently asking the
value P(Z,<230), the probability of the event {Z,<230}). Here n is, of
course, the number of days remaining in this century after the publication
of this book. On the other hand, if we want to use the river as a source of



