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Preface

This book is an outgrowth of a course developed at Stanford University over
the past five years. It is suitable as a self-contained textbook for second-level
undergraduates or for first-level graduate students in almost every field that
employs quantitative methods. As prerequisites, it is assumed that the student
may have had a first course in differential equations and a first course in linear
algebra or matrix analysis. These two subjects, however, are reviewed in
Chapters 2 and 3, insofar as they are required for later developments.

The objective of the book, simply stated, is to help one develop the ability
to analyze real dynamic phenomena and dynamic systems. This objective is
pursued through the presentation of three important aspects of dynamic
systems: (1) the theory, which explores properties of mathematical representa-
tions of dynamic systems, (2) example models, which demonstrate how concrete
situations can be translated into appropriate mathematical representations, and
(3) applications, which illustrate the kinds of questions that might be posed in a
given situation, and how theory can help resolve these questions. Although the
highest priority is, appropriately, given to the orderly presentation of the
theory, significant samples of all three of these essential ingredients are
contained in the book.

The organization of the book follows theoretical lines—as the chapter
titles indicate. The particular theoretical approach, or style, however, is a blend
of the traditional approach, as represented by many standard textbooks on
differential equations, and the modern state-space approach, now commonly

used as a setting for control theory. In part, this blend was selected so as to
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viii Preface

broaden' the scope—to get the advantages of both approaches; and in part it
was dictated by the requirements of the applications presented. It is recog-
nized, however, that (as in every branch of mathematics) the root ideas of
dynamic systems transcend any particular mathematical framework used to
describe those ideas. Thus, although the theory in this book is presented within a
certain framework, it is the intent that what is taught about dynamic systems is
richer and less restrictive than the framework itself.

The content of the book is, of course, partly a reflection of personal taste,
but in large portion it was selected to directly relate to the primary objective of
developing the ability to analyze real systems, as stated earlier. The theoretical
material in Chapters 2 through 5 is quite standard, although in addition to
theory these chapters emphasize the relation between theory and analysis.
Dominant eigenvector analysis is used as an extended illustration of this
relationship. Chapter 6 extends the classical material of linear systems to the
special and rich topic of positive systems. This chapter, perhaps more than any
other, demonstrates the intimate relation between theory and intuition. The
topic of Markov chains, in Chapter 7, has traditionally been treated most often
as a distinct subject. Nevertheless, although it does have some unique features,
a great deal of unity is achieved by regarding this topic as a branch of dynamic
system theory. Chapter 8 outlines the -concepts of system control—from both
the traditional transform approach and the.state-space approach. Chapters 9
and 10 treat nonlinear systems, with the Liapunov function concept serving to
unify both the theory and a wide assortment of applications. Finally, Chapter
11 surveys the exciting topic of optimal control—which represents an impor-
tant framework for problem formulation in many areas. Throughout all chap-
ters there is an assortment of examples that not only illustrate the theory but
have intrinsic value of their own. Although these models are abstractions of
reality, many of these are ‘“‘classic’’ models that have stood the test of time
and have had great influence on scientific development. For developing
effectiveness in analysis, the study of these examples is as valuable as the
study of theory.

The book contains enough material for a full academic year course. There
is room, however, for substantial flexibility in developing a plan of study. By
omitting various sections, the book has been used at Stanford as the basis for a
six-month course. The chapter dependency chart shown below can be used to
plan suitable individual programs. As a further aid to this planning, difficult
sections of the book that are somewhat tangential to the main development are
desngnated by an asterisk®.

" An important component of the book is the set of problems at the end of
the chapters. Some of these problems areiexercises, which are more or less
straightforward applications of the techniques discussed in the chapter; some
are extensions of the theory; and some introduce new application areas. A few
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Chapter Dependency
Chart (A chapter de-
pends on all chapters
leading to it in the
chart.)

of each type should be attempted from each chapter. Especially difficult
problems are marked with an asterisk™®.

The preparation of this book has been a long task that could not have
been completed without the help of many individuals. Many of the problems
and examples in the book were developed jointly with teaching assistants and
students. I wish to acknowledge the Department of Engineering-Economic
Systems at Stanford which provided the atmosphere and resources to make
this project possible. I wish to thank my family for their help, encour-
agement, and endurance. 1 wish to thank Lois Goularte who efficiently typed
the several drafts and helped organize many aspects of the project. Finally,
I wish to thank the scores of students, visitors, and colleagues who read primitive
versions of the manuscript and made many valuable individual suggestions.

Davip G. LUENBERGER
Stanford, California
January 1979
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chapter 1
Introduction

1.1 ' DYNAMIC PHENOMENA

The term dynamic refers to phenomena that produce time-changing
patterns, the characteristics of the pattern at one time being interrelated with
those at other times. The term is nearly synonymous with time-evolution or
pattern of change. It refers to the unfolding of events in a continuing evolution-
ary process. ‘

Nearly all observed phenomena in our daily lives or in scientific investiga-
tion have important dynamic aspects. Specific examples may arise in (a) a
physical system, such as a traveling space vehicle, a home heating system, or in
the mining of a mineral deposit; (b) a social system, such as the movement
within an organizational hierarchy, the evolution of a tribal class system,or the
behavior of an economic structure; or (c) a life system, such as that of genetic
transference, ecological decay, or population growth. But while these examples
illustrate the pervasiveness of dynamic situations and indicate the potential
value of developing the facility for representing and analyzing dynamic be-
havior, it must be emphasized that the general concept of dynamics transcends
the particular origin or setting of the process.

Many dynamic systems can be understood and analyzed intuitively, with-
out resort to mathematics and without development of a general theory of
dynamics. Indeed, we often deal quite effectively with many simple dynamic
situations in our daily lives. However, in order to approach unfamiliar complex
situations efficiently, it is necessary to proceed systematically. Mathematics can
provide the required economy of language and conceptual framework.
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With this view, the term dynamics soon takes on somewhat of a dual
meaning. It is, first, as stated earlier, a term for the time-evolutionary
phenomena in the world about us, and, second, it is a term for that part of
mathematical science that is used for the representation and analysis of such
phenomena. In the most profound sense the term refers simultaneously to both
aspects: the real, the abstract, and the interplay between them.

Although there are endless examples of interesting dynamic situations
arising in a spectrum of areas, the number of corresponding general forms for
mathematical representation is relatively small. Most commonly, dynamic
systems are represented mathematically in terms of either differential or differ-
ence equations. Indeed, this is so much the case that, in terms of pure
mathematical content, at least the elementary study of dynamics is almost
synonymous with the theory of differential and difference equations. It is these
equations that provide the structure for representing time linkages among
variables.

The use of either differential or difference equations to represent dynamic
behavior corresponds, respectively, to whether the behavior is viewed as
occurring in continuous or discrete time. Continuous time corresponds to our
usual conception, where time is regarded as a continuous variable and is often
viewed as flowing smoothly past us. In mathematical terms, continuous time of
this sort is quantified in terms of the continuum of real numbers. An arbitrary
value of this continuous time is usually denoted by the letter . Dynamic
behavior viewed in continuous time is usually described by differential equa-
tions, which relate the derivatives of a dynamic variable to its current value.

Discrete time consists of an ordered sequence of points rather than a
continuum. In terms of applications, it is convenient to introduce this kind of
time when events and consequences either occur or are accounted for only at
discrete time periods, such as daily, monthly, or yearly. When developing a
population model, for example, it may be convenient to work with yearly
population changes rather than continuous time changes. Discrete time is
usually labeled by simply indexing, in order, the discrete time points, starting at
a convenient reference point. Thus time corresponds to integers 0, 1, 2, and so
forth, and an arbitrary time point is usually denoted by the letter k. Accord-
ingly, dynamic behavior viewed in discrete time is usually described by equa-
tions relating the value of a variable at one time to the values at adjacent times.
Such equations are called difference equations.

1.2 MULTIVARIABLE SYSTEMS

The term system, as applied to general analysis, was originated as a recognition
~ that meaningful investigation of a particular phenomenon can often only be :
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achieved by explicitly accounting for its environment. The particular variables
of interest are likely to represent simply one component of a complex,
consisting of perhaps several other components. Meaningful analysis must
consider the entire system and the relations among its components. Accordingly,
mathematical models of systems are likely to involve a large number of
interrelated variables—and this is emphasized by describing such situations as
multivariable systems. Some examples illustrating the pervasiveness and impor-
tance of multivariable phenomena arise in consideration of (a) the migration
patterns of population between various geographical areas, (b) the simultane-
ous interaction of various individuals in an economic system, or (c) the various
age groups in a growing population.

The ability to deal effectively with large numbers of interrelated variables
is one of the most important characteristics of mathematical system analysis. It
is necessary therefore to develop facility with techniques that help one clearly
think about and systematically manipulate large numbers of simultaneous
relations. For one’s own thinking purposes, in order to understand the essential
elements of the situation, one must learn, first, to view the whole set of
relations as a unit, suppressing the details; and, second, to see the important
detailed interrelations when required. For purposes of manipulation, with the
primary objective of computation rather than furthering insight, one requires a
systematic and efficient representation.

There are two main methods for representing sets of interrelations. The
first is vector notation, which provides an efficient representation both for
computation and for theoretical development.. By its very nature, vector
notation suppresses detail but allows for its retrieval when required. It is
therefore a convenient, effective, and practical language. Moreover, once a
situation is cast in this form, the entire array of theoretical results from linear
algebra is available for application. Thus, this language is also well matched to
mathematical theory.

The second technique for representing interrelations between variables is
by use of diagrams. In this approach the various components of a system are
represented by points or blocks, with connecting lines representing relations
between the corresponding components. This representation is exceedingly
helpful for visualization of essential structure in many complex situations;
however, it lacks the full analytical power of the vector method. It is for this

.reason that, although both methods are developed in this book, primary
emphasis is placed on the vector approach.

Most situations that we investigate are both dynamic and multivariable.
They are, accordingly, characterized by several variables, each changing with
time and each linked through time to other 'variables. Indeed, this combination

of multivariable and time-evolutionary structure characterizes the setting of the
. modern theory of dynamic systems.
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That most dynamic systems are both time-evolutignary and multivariable
implies something about the nature of the mathematics that forms the basis for
their analysis. The mathematical tools are essentially a combination of differen-
tial (or difference) equations and vector algebra. The differential (or difference)

" equations provide the element of dynamics, and the vector algebra provides the
notation for multivariable representation. The combination and interplay be-
tween these two branches of mathematics provides the basic foundation for all
analysis in this book. It is for this reason that this introductory chapter is
followed first by a chapter on differential and difference equations and then by
a chapter on matrix algebra.

1.3 A CATALOG OF EXAMPLES

As in all areas of problem formulation and analysis, the process of passing from
a “real world” dynamic situation to a ‘suitable abstraction in terms of a
mathematical model requires an expertise that is refined only through experi-
ence. In any given application there is generally no single “correct” model;
rather, the degree of detail, the emphasis, and the choice of model form are
subject to the discretionary choice of the analyst. There are, however, a
number of models that are considered “classic” in that they are well-known and
generally accepted. These classic models serve an important role, not only as
models of the situation that they were originally intended to represent, but also
as examples of the degree of clarity and reality one 'should strive to achieve in
new situations. A proficient analyst usually possesses a large mental catalog of
these classic models that serve as valuable reference points—as well-founded
points of departure. v )

The examiples in this section are in this sense all classic, and as such can
form the beginnings of a catalog for the reader. The catalog expands as one
works his way through succeeding chapters, and this growth of well-founded
examples with known properties should be one of the most important objec-
tives of one’s study. A diverse catalog enriches the process of model develop-
ment.

The first four examples are formulated in discrete time and are, accord-
ingly, defined by difference equations. The last two are defined in continuous
time and thus result in differential equations. It will be apparent from a study
of the examples that the choice to develop a continuous-time or a discrete-tinie
model of a specific phenomenon is somewhat arbitrary. The choice is usually
resolved on the basis of data availability, analytical tractability, established
convention in the application area, or simply personal preference.

Example 1 (Geometric Growth). A simple growth law, useful in a wide
assortment of situations (such as describing the increase in human or other
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Figure 1.1. Geometric growth.

populations, the growth of vegetation, accumulated publications in a scientific.
field, consumption of raw materials, the accumulation of interest on a loan,
etc.), is the linear law described by the difference equation

x(k+1)= ax(k)

The value x(k) represents the magnitude of the variable (e.g., population) at
time instant k. The parameter a is a constant that determines the,rate of
growth. For positive growth, the value of a must be greater than unity—then
each suceessive magnitude is a fixed factor larger than its predecessor.

If an initial magnitude is given, say x(0)=1, the successive values can be
found recursively. In particular, it is.easy to see that x(1)=a, x(2) = a?, and, in
general, x(k)=a* for k=0,1,2,.... A typical pattern of growth resulting
from this model is shown in Fig. 1.1.

The growth pattern resulting from this simple linear model is referred to as
geometric growth since the values grow as the terms of a geometric series. This
form of growth pattern has been found to agree closely with empirical data in
many situations, and there is often strong accompanying theoretical justifica-
tion for the model, at least over a range of values.

Example 2 (Cohort Population Model). For many purposes (particularly in
populations where the level of reproductive activity is nonuniform over a
normal lifetime) the simple growth model given above is inadequate for
comprehensive analysis of population change. More satisfactory models take
account of the age distribution within the population. The classical model of
this type is referred to as a cohort population model.

* The population is divided into age groups (or cohorts) of equal age span,
say five years. That is, the first group consists of all those members of the
population between the ages of zero and five years, the second consists of those
between five and ten years, and so forth. The cohort model itself is a
discrete-time dynamic system with the duration of a single time period corres-
ponding to the basic cohort span (five years in our example). By assuming that
the male and female populations are identical in distribution, it is possible to
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simplify the model by considering only the female population. Let x;(k) be the
(female) population of the ith age group at time period k. The groups are
indexed sequentially from 0 through n, with O representing the lowest age
group and n the largest. To describe system behavior, it is only necessary to
describe how these numbers change during one time period.

First, aside from the possibility of death, which will be considered in a
moment, it is clear that during one time period the cohorts in the ith age group
simply move up to the (i+1)th age group. To account for the death rate of
individuals within a given age group, this upward progression is attenuated by a
survival factor. The net progression can be described by the simple equations

xi+1(k+1)=Bixi(k)s '=01 17-'-3 n_l (1'1‘)

where B, is the survival rate of the ith age group during one period. The factors
B. can be determined statistically from actuarial tables.

The only age group not determined by the equation above is xy(k + 1), the
group of individuals born during the last time period. They are offspring of the
population that existed in the previous time period. The number in this group
depends on the birth rate of each of the other cohort groups, and on how large
each of these groups was during the previous period. Specifically,

xolk + 1) = agxo(k) + ayx, (k) + ax,(k) + - - -+ a,x, (k) (1-2)

where o; is the birth rate of the ith age group (expressed in number of female
offspring per time period per member of age group i). The factor «; also can be
usually determined from statistical records.

Together Egs. (1-1) and (1-2) define the system equations, determining
how x;(k+1)’s are found from x;(k)’s. This is an excellent example of the
combination of dynamics and multivariable system structure. The population
system is most naturally visualized in terms of the variables representing the
population levels of the various cohort groups, and thus it is a multivariable
system. These variables are linked dynamically by simple difference equations,
and thus the whole can be regarded as a composite of difference equations and
multivariable structure.

Example 3 (National Economics). There are several simple models of national
economic dynamics.* We present one formulated in discrete time, where the
time between pe_riods is usually taken as quarters of full years. At each time
period there are four variables that define the model. They are

Y (k) = National Income or National Product

C(k) = Consumption

I(k) = Investment

G(k) = Government Expenditure

. * Sec the notes and references for Sect. 4.8, at the end of Chapter 4.
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The variable Y is defined to be the National Income: the total amount earned
during a period by all individuals in the economy. Alternatively, but equival-
ently, Y can be defined as the National Product: the total value of goods and
services produced in the economy during the period. Consumption C is the
total amount spent by individuals for goods and services. It is the total of every
individual’s expenditure. The Investment I is the total amount invested in the
period. Finally, G is the total amount spent by government during the period,
which is equal to the government’s current revenue. The basic national
accounting equation is

Y(k)= C(k)+I(k)+ G(k) (1-3)

From an income viewpoint, the equation states that total individual income
must be divided among consumption of goods and services, investment, or
payments to the government. Alternatively, from-a national product viewpoint,
the total aggregate of goods and services produced must be divided- among
individual consumption, investment, or government consumpticn.

In add:tion to this basic definitional equation, two relationships are intro-
duced that represent assumptions on the behavior of the economy. First, it is
assumed that consumption is a fixed fraction of national income. Thus,

C(k)=mY(k) (1-4)

for some m. The number m, which is restricted to the values 0<m <1, is
referred to as the marginal propensity to consume. This equation assumes that
on the average individuals tend to consume a fixed portion of their income.
The second assumption concerning how the economy behaves relates to
the influence of investment. The general effect of investment is to increase the
productive capacity of the nation. Thus, present investment will increase
national income (or national product) in future years. Specifically, it is assumed

that the increase in national income is proportional to the level of investment.
Or,

Y(k+1)=Y(k)=rI(k) (1-5)

The constant r is the growth factor, and it is assumed that r>0.

The set of equations (1-3), (1-4), and (1-5) defines the operation of the
economy. Of the three equations, only the last is dynamic. The first two, (1-3)
and (1-4), are static, expressing relationships among the variables that hold at

every k. These two static equations can be used to eliminate two variables from
the model. Starting with

Y(k)= C(k)+I(k)+ G(k)
substitution of (1-4) produces

Y(k)=mY(k)+I(k)+ G(k)



