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Preface

Some teachers of biochemistry think it positively beneficial for
students to struggle with difficult mathematics. I do not number
myself among these people, although I have derived much personal
pleasure from the study of mathematics and from applying it to
problems that interest me in biochemistry. On the contrary, I think
that students choose courses in biochemistry out of interest in
biochemistry and that they should not be encumbered with more
mathematics than is absolutely required for a proper understanding
of biochemistry. This of course includes physical chemistry, because a
biochemist ignorant of physical chemistry is no biochemist. I have
been guided by these beliefs in writing this book. I have laid heavy
emphasis on those topics, such as the use of logarithms, that play an
important role in biochemistry and often cause problems in teaching;
I have ignored others, such as trigonometry, that one can manage
without. The proper treatment of statistics has been more difficult to
decide. Although it clearly plays an important part in all experi-
mental sciences, it is usually preferable to treat it as a subject in its
own right and not to try to incorporate it into a course of elementary
mathematics. In this book, therefore, I have used a few examples
from statistics to illustrate more general points, but I have not
discussed it for its own sake. To summarize, the book is directed
primarily towards students taking compulsory courses in mathe-
matics in the early stages of their training as biochemists, but I hope it
will also prove useful as a short revision text at later stages in the
study of biochemistry.

I should like to thank my wife Mary Ann for her encouragement
and support during the writing of this book, and for pointing out
various ways in which it could be made more comprehensible. I am
also grateful to my colleagues Geoffrey Bray, Stuart Ferguson, Baz
Jackson, John Teale and Chris Wharton for reading the manuscript
and suggesting many improvements to it.

January, 1981 Athel Cornish-Bowden
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1 The Language of Mathematics

1.1  Introduction

Lord Kelvin once remarked that all of science could be divided into
physics and stamp collecting. Although this rather patronizing
comment of a physicist is not one that will appeal to all biochemists, it
has an element of truth in it. A science can hardly claim to be a science
as long as it remains no more than a catalogue of unrelated
observations. Only when general laws can be proposed and tested by
experiment can it be said to have passed from mere description into
science. In chemistry the transformation from stamp collecting into
science corresponded with the development of thermodynamics and,
later, the atomic theory and theories of chemical bonding; in
biochemistry, the gradual realization that understanding of life
processes requires a foundation of physical chemistry and not just a
list of metabolic reactions has played a corresponding role. It is no
coincidence that mathematics has been central in all of these
developments, and it is now almost impossible to comprehend even
elementary biochemistry without a grasp of elementary mathematics.
Fortunately for non-mathematically minded biochemists, however,
the mathematics necessary for an undergraduate course in bio-
chemistry is nearly all elementary, and nearly all of it has been touched
on in every science student’s previous education. Little more is
required, therefore, than to identify the parts of elementary math-
ematics that are important in biochemistry and to reinforce them with
appropriate examples. P

In mathematics itself, the transformation from description into
science is paralleled by the development from arithmetic, which is
concerned with numbers and their manipulation, into algebra.
Arithmetic is very useful, but it is much too limited to satisfy all of the
needs of science. In arithmetic, every problem is a new and separate

1



2 | The Language of Mathematics

problem, and it is difficult to make useful generalizations and hence to
express scientific laws. Let us consider the simple biochemical
example in Table 1.1, which shows a set of rates of a reaction
measured at the substrate concentrations given. As it stands the table
is no more than a description of the results of a particular set of
measurements and as long as we treat the numbers just as numbers we
cannot make a general or useful statement about the enzyme to which
they refer. The table tells us the rates observed at substrate
concentrations of 5 mM and 10 mM but offers no guidance about
what rate to expect at 8 mM; it does not tell us whether the system
studied was behaving in accordance with some general law; it offers no
clue as to what general law there might be. To remedy these omissions
we must move beyond arithmetic into algebra, because only then will
we be able to recognize a pattern or regularity in the numbers, and
express it so that it can be recognized again if it occurs with another
system. If the rates in Table 1.1 are represented as v and the substrate
concentrations as s, then the following equation expresses a law that
defines all of the numbers in the table:

10s

'S4t
This equation has two advantages over the table: first, it allows a
summary of all of the information while occupying much less space;
secondly, it predicts what v values we might expect to observe at s
values that are not included in the table. For example, it answers the
question above by predicting that v = 6.67 uM s~ ' when s = 8 mM.
This is clearly more useful than just listing a set of numbers recorded

on a particular occasion.

One can proceed one stage further with this example by noting that
the equation is typical of what is reported for many enzymes, and so if

Table 1.1 Observations from a kinetic experiment

Substrate concentration Rate
(mM) . (uMs™1)

2.00
3.33
5.56
7.14
8.33

=NV IS

B




Priority rules for operators | 3

we replace the numbers 10 (uMs™') and 4 (mM) by V and K,
respectively, we have an equation that expresses a generalization
about enzymes:
Vs
U=
Kn+s

Again, replacing numbers with symbols has increased the generality of
what we want to say. In addition to the symbols v, V, s and K, which
represent numbers, either particular ones or generalized ones, the
equation contains three operators: one is represented by the addition
sign +; one is shown by the horizontal line between Vs and K, +s;
and the third is implied by the juxtaposition of ¥ and s, but could have
been made explicit by writing Vs instead of Vs. Each operator
specifies something to be done to the numbers or symbols operated
on: the + sign requires K, and s to be added together; the horizontal
line requires Vs to be divided by K, + s; the juxtaposition of ¥ and s
(or a dot between them) requires them to be multiplied together.

As long as no ambiguity is possible mere juxtaposition is sufficient
to indicate multiplication, but if several numbers are to be multiplied
together, or if we allow algebraic symbols consisting of more than one
letter each (as in Fortran and many other computer languages), or if
ambiguity is possible for some other reason, multiplication can be
indicated by a dot or a cross. The dot is more common for pairs of
symbols (where no confusion with the decimal point is possible) and
the cross is more common for pairs of numbers, but the two symbols
have the same meaning in most contexts, i.e. ¥ x s means the same as
V - s. (In some specialized applications, such as in vector algebra, it is
convenient to assign distinct meanings to - and x, but these need not
concern us in elementary biochemistry). In current usage the dot
should be written above the line and the decimal point on the line, e.g.
5.1:8.7 =44.37 not 5-5.87 =44-37 but this is rather a recent
convention so far as British books are concerned: in older British (but
not American) work one is likely to encounter exactly the opposite
convention.

1.2 Priority rules for operators

To avoid ambiguity it is important to realize that operators have to be
obeyed in a proper order. Unlike ordinary language, equations are
not read from left to right but in accordance with priority rules that
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require certain operators to be obeyed before others. Thus, the value
of 5 x 342 x4—3is 20, not 25 or 65, because multiplication must be
done before addition or subtraction. In general, the rule is as follows:

(1) expressions within brackets must be evaluated first;

(2) if brackets are ‘nested’ (brackets within brackets), ‘inner
brackets must be evaluated before ‘outer’;

(3) exponentiation must be carried out before multiplication and
division;

(4) multiplication and division must be carried out before addition
and subtraction.

)

‘Exponentiation’ is the raising of a number or expression to a power,
as in x2, (x + y)°, etc. If a power is itself raised to a power we work
down from the top, i.e.

e~2 means e~ not (e~%)?

As in this example, it is always permissible and often desirable to use
brackets to clarify an expression that might otherwise be mis-
interpreted. This is true even if the expression without brackets is
strictly unambiguous.

There are no rules of priority between addition and subtraction
among themselves, because the result of a sequence of additions and
subtractions is independent of the order in which they are done. This
is normally a matter of convenience only, although occasionally
numerical considerations may make one order better than another. In
principle, the same applies to multiplication and division, but greater
care is needed because thoughtless use of the slash / to indicate
division often results in expressions with meanings that are either
unclear or clear but different from what the writer intended. It is
wisest therefore to use the slash in moderation and to check carefully
that expressions have the meanings intended. Consider for example
the following equation:

. Vs
T K,(14+i/K)+s

This is unambiguous, and the priority rule should prevent the
bracketed expression (1 +i/K;) from being misread as [ (1 +i)/K;].
When there is more than a single term after the slash, however, as in
(i/K;+ 1), misunderstanding is more likely because it is not always
clear whether the slash indicates simple division or whether it is used
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to avoid the typographical inconvenience of a cumbersome fraction

such as . Double slashes are so confusing that they should never

be used: this applies not only to ordinary algebraic expressions but
also the units of physical quantities, as in R = 8.314 J/mol/K. Here it
is not clear whether the K belongs in the numerator of the unit with
the J or in the denominator with the mol. To avoid this uncertainty
the definition should be written as follows: R = 8.314 Jmol "' K~ 1.
For reasons that will become clear in Chapter 2, mol ™' and K ~ ! have
the meanings (1/mol) and (1/K), respectively. In general, slashes
should only be used in expressing units when there is only a single
term in the denominator.

Certain computer languages do not obey precisely the same
priority rules as conventional mathematics. This fact has generated
rather more confusion about the conventions than existed before
computers became widespread, and the appearance of cheap elec-
tronic calculators has made matters much worse in this regard
because those that use so-called ‘algebraic notation’ commonly ignore
mathematical conventions altogether and use a ‘left-to-right’ system.
An expression such as

A*A/B/C/D+A/B*C

would be unambiguous in a Fortran program and would have the
meaning

AA  AC

BCD " B

(The multiplication sign in Fortran is expressed as * and must be
explicit). This unambiguous meaning, which may nonetheless be
different from what the programmer intended, does not imply that
such expressions are acceptable in ordinary mathematics. Similarly,
the fact that simple calculators often disregard priority rules does not
mean that they are obsolete. For example, the expression 5 x 3+ 2 x 4
— 3 must be interpreted as (5 x 3) + (2 x 4) — 3 if the proper conven-
tions are followed, even though most simple calculators using so-
called ‘algebraic notation’ execute instructions as they are entered and
consequently interpret the above expression as {[ (5 x 3)+2] x 4}
—3 = 65 (this is indeed what I get if  keyin 5x3+2x4—3 =on
my pocket calculator).
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1.3 The summation sign

It often happens, especially in statistical calculations, that we need to
add together a large number of terms of the same kind. For example, if
we have a set of values x,, x,, X5 ... x,, their arithmetic mean X is
given by

X=X +x3+X3+ ... +x,)/n

In more complex examples explicit representation of the summation
becomes cumbersome and unnecessary, and it is more convenient to
use a special operator called the summation sign ) (a capital Greek
sigma) instead:

n
Yxi=x;+x3+x34+ ... +X,
i=1
The limits i = 1 and n written above and below the sign mean ‘start
adding at i = 1 and continue until i = n’. If the limits are obvious, as
for example in statistical calculations where one often has to sum over
all of a set of observations, they can be omitted.

Although the summation sign is a considerable convenience when
the underlying calculation is understood, it can sometimes obscure
the meaning when it is not. Indeed, one of the main reasons why more
advanced mathematics than one is familiar with can appear much
more difficult than it actually is, is that it often uses special notation to
express results more compactly. For example, the whole of matrix
algebra is a way of expressing very complicated relationships in an
extremely compact way: very convenient when one is familiar with the
symbolism but baffling when one is not. Whenever obscurity
threatens for this sort of reason it is often helpful to translate the
compact expressions into a more long-winded form, and then their
meanings are likely to become clearer.

A corresponding sign for products also exists, although it is much
less often encountered than the summation sign. It is written as the
Greek capital pi, [ ], and is used in an exactly analogous way, i..

n
[T xi=xx2%5...x,
i=1

1.4 Functions

A mathematical function can be regarded as a set of instructions to
carry out a series of operations on a variable or set of variables. For
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example, if we define v in terms of s as

B Vs
Ko +s

v

where ¥V and K, are constants, then we are defining v as a function of s,
by defining what operations have to be carried out on s to obtain v. We
can also have functions of more than one variable. For example, v may
be determined not solely by a single concentraion s but may depend
both on s and on another concentration i:

Vs
V=S
K. (1+i/K)+s

and now we say that v is a function of both s and i.

Sometimes we may wish to symbolize the existence of a depen-
dence of one variable on another without specifying what the
dependence is. We then often use the symbol f( ) or something
similar, e.g.

v=f(s,1i)

which states that v depends on s and i but does not indicate whether
the dependence follows the equation given above or some other
equation.

There are a number of functions that are so often required in
mathematics that they are given special symbols. For example, if y is
always given by multiplying x by itself we say that y is the square of x
and symbolize the relationship as

y=x

where the superscript 2 indicates that 2 x’s need to be multiplied
together. Conversely, x in this example is the square root of y, which
we may write as

x=./y
or, more commonly and for reasons that I shall discuss in Chapter 2,
we may express the same relationship as

'S
x =y

Other functions of great importance are the logarithmic and exponen-
tial functions, which I shall also consider in Chapter 2, the derivative,
or result of differentiation (Chapter 3), and the integral (Chapter 4).
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There are others, such as trigonometric functions, that are important in
mathematics generally, but have little application in elementary
biochemistry, and so I shall say little about them. On the other hand,
there are certain functions that have little importance in mathematics
as a whole but which are useful to define for biochemical purposes.
For example, various properties of proteins can be related to the
hydrogen-ion concentration [H* ] in terms of the following kind of
expression:

v
1+ ([HY]/K)+(K,/[HT])
in which J, K| and K, are constants. This kind of function was first

studied by Michaelis and it is consequently called a Michaelis
function.

y

1.5 Constants, variables and parameters

Some quantities, such as the number 2.0, have a unique value under all
circumstances and are called constants. Other numbers, such as the
gas constant R ~8.3Jmol 'K ™! are found by experiment to be
constant also. Others, such as K, in the Michaelis—Menten equation,

v=Vs/(K,+5)

may be constant for a particular enzyme and substrate under well-
defined and constant conditions, although they may vary with
temperature, pH, etc. These quantities can be treated mathematically
as constants only as long as the physical conditions that determine
them are constant.

We are often interested in quantities that change when the
conditions change. For example, we may find that an equilibrium
‘constant’ K varies with the temperature 7'according to the van’t Hoff

equation:
AS° AH°
K = e B il
ex"( R RT)

where exp( ) is the exponential function (Chapter 2), and AS®, AH®
and R are constants. Thus although K may be constant at constant 7°
it varies with 7 and so if we are concerned with changes in
temperature we must treat K as a variable.



