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Preface

Stability is a classical topic in the study of dynamical sys-
tems. Since the time of Lyapunov, mathematicians have pro-
posed many different definitions of stability to investigate ba-
sic properties of orbits of dynamical systems. This book does
not contain all these important results in the literature, but
focuses on three special topics, i.e., chain stability, Zhukovskij
stability a-nd intertwined basins.

We begin with basic notions that are necessary to describe
the dynamical behaviors, and also reach to the most recent
achievements, for example, the chain stability is first proposed
in 200891, In this book, we are mainly interested in the geo-
metric or topological aspects of the orbits or solutions more
than an explicit formula for an orbit. Also, this book is meant
to be a graduate textbook and not just only a monograph on
the subject.

This book contains four chapters. All the definitions, the-
orems and formulae are independently numbered by chapter,
for example, Theorem 2.8 in Chapter IT means the eighth the-
orem in Section 2 of the same chapter. Chapter I gives a de-

tailed discussion about basic concepts in dynamical systems,
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in particular, it deals with different recursion motions and
their relations, for example, Auslander recurrence and Chain
recurrence. Also, it includes some specific prerequisites for
later discussions. Chapters II and III are the central part
of this book, they treat two important ideas: chain stability
and Zhukovskij stability. Most results in these two chapters
are published recently in mathematical journals. In Chapter
IV, we consider an interesting dynamical phenomenon: inter-
twined basins of attraction for continuous flow. Obviously, it
demands further researches.

We were supported by the National Science Foundation of

China and several grants from our universities.

Changming Ding, Xiamen University, cmding@163.com
Yuming Chu, Huzhou Teachers College, chuyuming@hutc.zj.cn



Contents

Preface

Chapter I Basic Definitions and Properties-------- 1
I.1 Some Elementary Concepts -+« --vevevreenieien 1
L2 Recurrent OIDitS: -« -« crerrrenenmmraemineanenn. 8
1.3 Auslander Recurrence--«-«««-««-.- e 18
L4 Chain RECUITENCE - « -« -t cvvvrrenenenrarnaneaenn. 28
L5 AGLIACLOTS « «« v cneeremrananerareeneasoirnenienens 35

Chapter II Chain Stability -« - eooooveennn. 49
IL1 Absolute Stability:« -« «««wevveverenoearaneenannn. 50
11.2 Chain Prolongation and Stability-----------c--+- 58
II.3 Attracting Sets and Quasi-attracting Sets------- 64
14 Lyapunov Functions - -« «««--cveeerrereeoninens 71
II.5 Chain Stability of Closed Sets---«+--c-ovcvvenn 75

Chapter ITII Zhukovskij Stability -------------v0v ot 85
III.1  Zhukovskij Stability -« «cccerreerrerimmennen.. 85
1.2 Omega Limit Set- -« evrvmeemerinaaii... 03
II1.3 Asymptotical Stability - «--covevreeervvnnens 100
IILA  Global StIUCHUTE « -« <« +ccevenveneanveneennens 105

II1.5 Near Perlodl(nty .............................. 108



iv Contents

Chapter IV Intertwined Basins of Attraction:---119

IV.1 Two-dimensional Systems - -«-------c-oeveennn 119
IV.2 Intertwining Property -« ««-- - coeveeeeeeaaeon. 125
IV.3  SUpEr-intertwining -« «-cxeceeeermeeemnen. 134
IV.A  ApPDLCAION - -+ eeeeeveeeeeaanns 136

References ............................................ 142



Chapter 1

Basic Definitions and

Properties

In this chapter, we introduce some important concepts in dy-
namical systems and discuss their basic properties, which are
often used in the subsequent chapters. The general informa-
tion on continuous dynamical systems or flows may be found
in [24] and [4].

I.1 Some Elementary Concepts

Let X be a metric space with metric d, i.e., X is an arbitrary
set of elements and there is a nonnegative real-valued function
d(p,q) of p and g in X, called the distance function and satis-
fying the following three conditions: (i) d(p,q) = 0 if and only
if p = q, (ii) d(p, q) = d(q, p), and (iii) d(p, q) < d(p, s)+d(s,q)
for arbitrary p, q, s in X. Throughout the book, we let
Bs(z) = {y = X|d(z,y) < 8} be the open ball with center z
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and radius 6 > 0, and let Bs(z) = {y € X|d(z,y) < 6} be the
closed ball. For z € X, let H.(z) = {y € X|d(z,y) = r} be
the sphere centered at z. In addition, for p € X and A C X,
let d(p, A) = inf{d(p, 2)|z € A}, then the r-neighborhood of
A is denoted by N,.(A) = {z € X|d(z,A) < r} for r > 0.
Similarly, we define H,(A) = {2z € X|d(z,A) = r} for r > 0.
For A c X, A, OA and IntA denote the closure, the bound-
ary and the interior of A, respectively. Finally, R and R*
(R™) denote the reals and non-negative (non-positive) reals,

respectively.

Let X be a set, a relation F on X is a subset of X x X.
The inverse of F', denoted by F~!, is obtained by reversing
each of the pairs belonging to F, ie.,, F7! = {(z,9)|(y,z) €
F}. The composite of two relations F and G is the relation
defined by the formula: F oG = {(z,2) € X x X|Jy €
X such that (z,y) € F and (y, z) € G}. A relation F is called
a closed relation if it is a closed subset in X x X. A relation F'
is called transitive if (a:, y) € F and (y,2) € F imply (z,2) €
F| or equivalently, if F o F' C F. Note that a relation F on
X can be thought of as a map from X to the power set of
X associating to each z € X a subset F(z) = {y|(z,y) € F'}
of X.

If X is a metric space, let 2% be the set of all nonempty
subsets of X, and let H(X) = {A C X|A is nonempty and
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closed in X'}. The Hausdorff metric for H(X) induced by d,
which is denoted by hg, is defined as follows: for any A, B €
H(X), ha(A, B) = inf{r > 0|/A C N.(B) and B C N,(A)}.
Note that if X is a bounded metric space, then Ay is a metric.
Moreover, if X is compact, then (H(X), hq) is also a compact
metric space (see [22]). (H(X), hq) is said to be the hyperspace
of (X, d).

Let {A;}32, be a sequence of subsets of (X, 7 ), where T is
the topology induced by d. We define lim sup 4; and lim inf A,
as follows:
limsup A; = {z € X|foreach U € T such thatx €, UNA; # @

for infinitely many i},
liminf A; = {z € X|foreach U € 7 such that z € U, UNA; #
@ for all but finitely many ¢}.

Observe that these two limit sets defined above are tightly
related to the topology 7 of the space X. Clearly, lim inf A; C
limsup A;. If limsup A; = liminf A; = A, we write lim A; =
A. Indeed, if X is compact and {4;}2; C H(X), then lim A;
is just the limit point of {4;}$2, in the metric space H(X) in

sense of Hausdorff metric.

Definition 1.1 A dynamical system or continuous flow
on X isamap 7 : X X R — X satisfying

(a) w(z,0) = z for each z € X (identity axiom),

(b) n(n(z,t),s) = n(z,t+s) forz € X and t, s € R



4 Chapter I  Basic Definitions and Properties

(group axiom),

(c) 7 is continuous (continuity axiom).

When a dynamical system is given on X, the space X and
the map 7 are respectively called the phase space and the
phase map. Here, t is often considered as a time parameter.
In the sequel, unless otherwise stated, a dynamical system on
X is always assumed given.

For brevity, we always write z-¢ in place of w(z,t), axioms
(a) and (b) then read z-0 = z and (z-t)-s = z-(t+s). Similarly,
welet A-J={z-tlr € A,t€ J}for AC X and J C R. For
example, - R = {z - t|{t € R} and z - R* = {z - t|t > 0} are
the orbit and the positive semi-orbit respectively of a point
z € X. AsetY in X is called positively (negatively) invariant
under 7 if Y -RT CY (Y-R™ CY). AsetV is said to be
invariant provided Y - R =Y. Thus, an invariant set is a set

consisting of entire orbits, and conversely.

Remark The closure, the boundary, the interior and the
complement of an invariant set are also invariant sets.

For a point p in X, there are three possible orbits as fol-
lows.

(1) p-t =p for all t € R. In this case the point p is called
a rest (critical, equilibrium, or stationary) point, its orbit is a
singular point set.

(2) p-7=pforaT#0 and pi$ not a rest point. In this
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case, p is said to be periodic and 7 is called a period of p, now
its orbit is a simple closed curve.

(3) p-t # pfor all ¢ € R. Thus, the orbit p- R is a
one-to-one continuous image of the real line.

The following important property is obtained directly from
the continuity axiom.

Continuous Dependence on Initial Conditions: For
any point x € X, any positive number 7' (arbitrarily large)
and any € > 0 (arbitrarily small), there can be found a ¢ >
0 such that if d(x,y) < & then there holds the inequality
dz-t,y-t) <efortel[-T,T.

Proof Suppose on the contrary, there exist sequences
of points {z,}, z» — = (n — o0) and numbers {t,}, ¢, €
[T, T], such that d(z - t,,z, - t,) = A > 0. Since {t,} is
bounded, it has a convergent subsequence. Without loss of
generality, we assume that ¢, — 7 € [T, T|. Now, it follows

from the continuity axiom that

(X tn, Tn tn) S d(z-tn,z-7)+d(x-7,2,-1,) = 0 (n — 0),

kY

it leads to A < 0, a contradiction. O

Definition 1.2 For a subset S in X and T > 0, if the
set X' =S :(—T,T) is open in X, and to each point x € ¥
there corresponds a unique number ¢, such that z-¢, € S and

|tz| < T, then we call X a tube of time length 2T with section
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(or transversal) S.

Theorem 1.3 If p is not a rest point of a dynamical

system, then there exists a tube containing p.

Proof Since p is not a rest point, thgre exists a 7 > 0
such that d(p,p- 1) > 0. Let ¢(z,t) = /JrT d(p, z - 0)d9, it
is easy to see that ¢(x,t) is continuous irf (z,t) and has the
continuous partial derivative ¢¢(z,t) = d(p, z-(t+7)) —d(p, z-
t). Also,

t1+ta+T

oz, ty +t2)=/ d(p,x - 6)do

t1+t2

to+1
— [ dp,z- 0+ )t
t

2

ta+T1
_ /t d(p, (z - t1) - 0)do

2

:¢($ : tl,t2)-

Since ¢:(p,0) = d(p,p-7) > 0, there is an € > 0 such that
¢(z,0) > 0 for x € B.(p). Now, according to the continu-
ous dependence on initial conditions, define 73 > 0 such that
p - [—370,370] C Be(p), which also implies that ¢(p, ) >
#(p,0) > ¢(p, —70). Next choose n > 0 such that B, (p- 1) U
B,(p- (-m)) C Be(p), meanwhile, for z € B,(p - 7o) we have
¢(z,0) > ¢(p,0) and for z € B,(p- (—7p)) we have ¢(z,0) <
#(p,0). Finally, let § > 0 such that Bs(p)-[—37,370] C B:(p),
Bs(p) - 10 C By(p- 1) and Bs(p) - (—70) C By(p - (—70)). We
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assert that if z € B;(p), then there is exactly one #(z) satis-
fying |t(z)| < 7o and ¢(z,t(z)) = ¢(p,0). Actually, it follows
from the fact that ¢(z,t) = ¢(z - ,0) is a strictly increas-
ing function of ¢ and ¢(p,7) > ¢(p,0) > é(p, —7). Let
Y = Bs(p) - (—70,70) and L = {z € X|¢(z,0) = ¢(p,0)}.
We shall prove that L is a local section of the tube X, i.e, for
each z € X' there is a unique t(x) with |¢(z)| < 279 such that
z-t(x) € L. In fact, by the definition of X, for any z € X there
is a 7y with 71| < 79 such that z; = z -1, € Bs(p), and then
for z, € B;s(p) there is a 75 with |72| < 79 such that z; -7, € L.
Thus z - (n + 72) = z - t(z) € L, where t(z) = 7, + 7 satis-
fying [t(z)| < |71| + |72| < 27. In order to prove the unique-
ness of {(z), we let t' and t" in [~7o, 70| such that x - ¢’ € L
and z -t” € L, and also suppose z; = x - 71 € Bs(p) with
|11 < 79. Hence, ¢(z1,t' — 1) = ¢(z,t') = ¢(z - t',0) and
d(z1,t" — 1) = o(z,t") = ¢(z - t”,0), which implies that
¢(z1,t'—11) = ¢(z1,t"—11) = ¢(p, 0). Note that [t'—7;| < 37,
|t" — 11| < 371 and ¢ (z1,t) > 0 for |t| < 37y, which im-
plies that ¢(z,t) is strictly increasing for |t| < 37p. Thus,

!~ =t"—m,ort =t". So we are done. O

Remark If X is a locally compact metric space, we may
assume that the function #(x) in Theorem 1.3 is continuous
in X, In fact, now we can restrict § > 0 in the above proof

to ensure that Bjs(p) is compact, thus L is locally compact.
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Consider a sequence {z,} in X' and z, — z € X. Note that
{2y - t(z,)} lies in L C Bj(p), without loss of generality, we
suppose that it is convergent to 2’ in L. Also, since {t(z,)} is
in [—79, 70, we assume that t(z,) — t’. Hence, we have 2’ =
z -t'. From |t/| < 79, it follows that ¢’ = t(x) by uniqueness,

i.e., t(xzn) — t(z). Then t(x) is continuous.

1.2 Recurrent Orbits

In this section, we first introduce variant limit sets, which
play a central role in the study of asymptotic behaviors of a
dynamical system. Next, we define several recursion concepts

and present their characterizations.

Definition 2.1 The positive limit set or omega limit set
of z in X is the set w(z) = {y € X| there is a sequence {t,} C
R* such that .tn — 400 and z - t, — y}. The first positive
prolongational limit set and first positive prolongational set
are defined, respectively, by J*(z) = {y € X| there are a
sequence {z,} in X and a sequence {t¢,} in R* such that
Tn — T, t, — 400 and z, - t, — y} and DV (z) = {y € X|
there are two sequences {z,} C X and {¢,} C R" such that
Zn, — z and z, - t, — y}.

By reversing the direction of time, we obtain definitions of

the negative cases a(x), J~(z) and D~ (z). In the sequel, we
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will focus on the discussions about w(z), J*(z) and D*(z),
however, similar results hold for a(z), J~(z) and D~ (x).

In this book, if no confusion, J*(z) and D*(z) are of-
ten called prolongational limit set and prolongational set for

short, respectively.

Theorem 2.2 For any =z € X, the following are true.

(1) w(z) and J*(z) are closed and invariant, D*(z) is
closed and positively invariant;

(2) z-RT =z-RT Uw(z) and D*(z) =z - RT U J*(z);

(3) w(z - t) = w(z) and J*(z-t) = .J+(m) hold for each
teR.

Proof (1) We first show that w(z) is closed and invari-
ant. Let {y,} be a sequence in w(z) with y, — y. Then, for
each n > 1, there is a sequence {t}} in Rt with t} — +o0
and z - tf — y, as k — +oo. Choose k, > n such that
d(yn,x - tf ) < % for every n > 1, and let ¢, = t; . Thus
t, — 400 and we claim that x - ¢, — y. To see this, observe
that d(y,z-t,) < d(y, Yn) + A(Yn, T - tn) < d(y, Yn) + % So we
conclude that d(y,z-t,) — 0 as n — 400, and then y € w(x).
Consequently, w(z) is closed. To see that w(z) is invariant,
let y € w(z) and t € R be arbitrary. There is a sequence {t,}
in R with ¢, — 400 and z - t, — y. From the continuity

axiomn, it follows z - (¢, +¢) — y - ¢. Since t, +t — +o0,
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we have y - t € w(z), and w(z) is invariant. Next, to show
that J*(z) is closed and invariant, let {y,} be a sequence in
JT(z) with y, — y. For each positive integer n, there are

sequences {z;} in X and {t}} in R* with 2} — z, t} — +o0

and zy - tf — yn. Choose k,, > n such that d(z} ,z) < l and
d(Yn, TR, 17 ) < % foreveryn > 1. Let z, = 2} _and t, =t} .
Then, z, — z, t, — +o00 and z,, - t, — y as n — +o00. Hence
J*™(z) is closed. To see that J*(z) is invariant, let y € J*(x)
and 7 € R be arbitrary. There are a sequence {z,} in X
and a sequence {¢,} in R* such that ¢, — +o0, z, — z and
Ty -t, — y. Clearly, t, +7 — +ocand z, - (t, +7) - y - 7.
Since £, — z, we have y -7 € J*(z) and J*(z) is invariant.
Finally, it is easy to see, from D*(z) = z- Rt U J'(z) in (2),
that D*(x) is closed and positively invariant.

(2) By the definition of w(z), we have z - R+ > z - RT U
w(z). To see that 7 - RY C z-RTUw(z), let y € - RT. Then
there is a sequence {y,} in z - Rt such that y, — y. Now
Yn = T - t, for a t, € R*. Either the sequence {t,} has the
property that t,, — +o0, in which case y € w(z), or there is a
subsequence ¢,, —t € R*. But thenz -¢,, > z-t€z -RT,
and since also z - t,, — y we have y =z -t € £ - R*. Thus
z-R* C z-RY Uw(x). Next, we prove that Dt(z) = z -
R* U J*(z). By the definition of D*(z), it is easy to see



