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Preface

This book for beginning graduate and advanced undergraduate
mathematics students presents point set topology not only as an end in
itself, but also as a related discipline to the proper understanding of
various branches of analysis and geometry. It starts with the basic
concepts of set theory and topological spaces and ends with the beginning
of functional analysis. The text and nearly all of the exercises presuppose
knowledge of only those concepts defined herein, so that the book is
self-contained to accommodate those who wish to study topology on
their own. Moreover, it includes additional material and literature which
make it valuable as a reference work.

The book contains enough material for a one-year course, and I have
found it accessible to juniors majoring in mathematics. By omitting
carefully chosen sections it is possible, but not easy, to cover most of
the book in a one-semester course. When giving a year’s course vn the
foundations of analysis for graduate students, I have been able to include
some additional material, such as differentiable manifolds or abstract
harmonic analysis and fixed point theorems.

The first chapter contains the fundamental notions associated with
a general topological space, and a systematic discussion of the various
practical methods used to define topological spaces. The second and
third chapters deal with those additional properties that give a general
topological space more resemblance to the primitive, intuitive concept
associated with the concept of space. The basic properties of functions
defined on topological spaces are collected in the fourth chapter, although
some concepts, such as continuous maps and homeomorphisms, were
introduced earlier for the sake of clarity. The last chapter contains an
exposition of the theory of topological convergence using filters and
nets, which is applied to problems of compactness, completion, and
compactification. The exercises vary in difficulty, and some provide
additional insights or new results. The principal theorems are all
included as part of the text. The remarks at the end of each chapter
contain pertinent comments which did not seem suitable for inclusion
elsewhere. While it is hoped that they may give the reader some historical

v



vi PREFACE

perspective, they do reflect the author’s personal thoughts, and no
attempt has been made at complete coverage.

The bulk of the material presented here was developed through lectures
at Cornell University and the University of Minnesota. I am very
grateful to Professor R. ]J. Walker and to Miss Madelyn Keady of
Cornell University and to my wife for their encouragement and help
with the preliminary publication. A great deal of additional work and
support is needed to make a first draft develop into a book. I want to
thank Professor J. B. Rosser for his kind interest in my project and for
giving me a helping hand. In Minnesota I was very fortunate to meet
Mr. Glenn Schober, who read the entire manuscript and made many
improvements. He also read and corrected the proofs and thus helped
eliminate many errors that I had overlooked.

I also want to express my appreciation for the support given to me
. by the various Federal agencies at several stages of the project. Finally,
my sincere thanks to Academic Press for their careful work.

STEVEN A. GaAL
June, 1964
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Introduction to Set Theory

1. Elementary Operations on Sets

At the time of this writing the fundamental system in mathematics
from which all others are constructed by logical reasonings is the theory
of sets. This is a fairly recent discovery, for the concept of an abstract
set had been isolated only at the end of the last century by Georg
Cantor. His results were published in two famous papers dated 1895
and 1897.

The purpose of this introductory chapter is to help the reader in
forming an intuitive concept of an abstract set. Cantor’s first memoir
begins with the following sentences: “By a set M we understand any
collection into a whole of definite and separate objects m of our intuition
or our thought. These objects are called the elements of M. In symbols
we express this as follows: M = {m}.” Needless to say, this is far
from a precise definition and it would be very foolish to build the whole
of mathematics on such shaky foundations. However, these are just the
opening notes of a magnificent theory and one hardly could begin
differently.

Sets will be denoted by the symbols a, b, ¢, ...; A BCinaes S, B SE, o
or %, B, G, .... It is likely that the reader knows a great variety of things
which he will correctly recognize as being sets: Collections of common
objects, aggregates of people, finite families of natural numbers, the
collection of all natural numbers {1, 2, 3, ...}, the set of integers 3, the
rationals R, the reals %, the complex numbers €, the Euclidean spaces.
These are very valuable examples of sets and we suppose that the
reader is familiar with these concepts, but as far as the theory is con-
cerned they are irrelevant. Instead, one stipulates the existence of one
particular set which will be called the void set or the empty set and shall
always be denoted by the symbol o.

Some sets are elements of others. If a is an element of 4 we write
ae A and if not then a ¢ A. Throughout this book the notations will
be chosen in the following manner: If a reasoning involves sets and
their elements, then the symbols 4, B, C, ... and a,b,¢, ... will be
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2 INTRODUCTION TO SET THEORY

used. If we deal also with sets of sets, then these will be denoted by
&, B, ¥, .. and their elements by A, B, C,.... On a few occasions
we shall go a step further and use a set ¥, its elements &, B, ..., the
elements 4, B, C, ... of these, and also the elements a,b,c, d, .. of the
sets A, B, C, ... . In the abstract axiomatic theory of sets, the membership
relation a € A is a primitive notion and it is further characterized only
by the axiomatic statements in which it occurs. One of these states that
if a is a set then a ¢ o. In other words, the empty set is really void.

If every element of 4 belongs to B, we say that 4 is a subset of B
and write 4 = B. The symbol 4 ¢ B will be used to denote that 4 is
not a subset of B. If 4 < B but B & A4, then 4 is called a proper
subset of B and one uses the notation 4 C B. Two sets A and B are
considered identical if they have the same elements, ie., if-4 < B
and B < A. If this is the case we write 4 — B. Clearly, ¢ = A for
every set 4 and if 4 # o then o C 4.

We shall often define sets by specifying their elements. If the set is
finite we simply enclose between curly brackets all the symbols which
designate these elements. For instance {1, 2, 4, 8} or {Conn., Minn., N AR
or {e, {1}, {2}, {1, 2}}. For sets for which this notation would be too
cumbersome to handle or if the set to be described is not finite, we
shall use other means. For example,

{n:n="kF and k=12 .}

denotes the set of cubes of natural numbers and
{n:n=x*+9y* and x,y€3}

is the set of integers which can be written as the sum of two squares.
In terms of this symbolism we have 4 = {a: a € 4} for any set A.

Our intuition suggests that the families described above indeed are
sets. In the strict axiomatic treatment it is considerably harder to
establish the fact that we are really defining certain sets. For instance,
the existence of the natural numbers is not taken for granted but is
derived from the axioms. The particular axiom which is needed here
states that if @ and b are sets then there is a set whose elements are
just the sets @ and &. This is called the nonordered pair_of a and b and
is denoted by {a, b}. By choosing @ = b we obtain the existence of a
set whose sole element is the set a. It is convenient to use the simpler
notation {a} instead of {a, a}. For a we can certainly choose the void
set 0 and get a new set {o}. Then a = {0} yields {{o}}, the set whose
only element is a set consisting of the single element . By continuing
in this fashion we end up with a whole class of sets:

(e}, o}, . (. flO}} ), ...
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Special names and symbols are attached . these curious sets: One,
two, three, ... and 1,2, 3, ...

If o is a set whose elements A are also sets, then we let U «f denote
the set consisting of the elements of the sets A:

Us ={a:acd and Ae}.

This is called the union of & or the sum of &. Its existence is postulated
in one of the axioms. If o is finite, e.g., if & = {4, B}or &/ = {4, B, C},
then we shall write AU B or AU Bu C instead of U «/. We notice
that AuB=BuAdand AU(BuUC)=AuvBuC=(AvB)vC.
Moreover, A~v A = A and 4 v e = A for any set A. Similarly, we
define the intersection of </ as the set of common elements of the sets 4
belonging to &7:

No/ ={a:acA forevery Ae}.

In the finite case we use the notation 4 " B or An Bn C, etc. We
have AnB=BnAand An(BNnC)=AnNnBnC=(AnB)nC
andalso An A =Aand Ane = o.

The operations A U B and 4 N B are meaningful for any pair of sets
A, B and yield new sets. Moreover, as we have seen, these operations
follow the commutativity and associativity laws known from elementary
algebra. The empty set o plays the role of the zero element. We also
have two distributivity properties: AU (BN C) = (AvB)n(4v ()
and An(BUC)=(AnB)yuAnC).

For any two sets A, B we can define the relative difference A — B
as the set consisting of those points of 4 which do not b¢long to B:

A—B={a:ac4 and a¢ B}.

Thus 4 — B is a subset of 4 and 4 — B = 4 if and only if 4 and B
are disjoint, i.e., A n B = o. Very often 4 — B is called the complement
of B relative to A and one writes ¢, B or A \ B instead of 4 — B.
If the set A is fixed throughout some discussion it is customary to use
the simpler notation —B or ¢B in place of A — B. This is particularly
convenient when a set A is given and the reasoning involves only
subsets of this universe 4.

There are two important identities involving unions, intersections,
and relative complements called de Morgan's formulas. The simplest
case concerns two sets A, B and complementation with respect to a
third fixed set X. In this special case de Morgan’s laws are

c(AuB)=cAncB and c(AnB)=cAvVcB .
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or in full details
X-(AUB)=(X-A)n(X-B) and X~ (4N B)= (X — A)u (X — B).
Similarly, in the case of finitely many sets 4, , ..., 4, we have
(4,v-..VA)=cA;n ..NncA,
and
d(4,n..n4,) = cA; b e

The general laws concern an arbitrary set ./ of sets 4 and comple-
mentation with respect to a fixed set X:

cUod =N{cd:Aes} and cNo/ = Ui{cd: e ).

Thus the complement of the union of & is the intersection of the set
consisting of the complements of the elements of . and a similar
statement holds for the complement of the intersection of .. The
finite cases discussed earlier are obtained by taking as &/ the finite
sets {4, B} and {4,, ..., 4,}.

The subsets of a given set X form a set Z(X) which is called the
power set of X. Since 6 < X and X < X we have o, X eZ(X) no
matter what X is. If X = o, then of course 2(X) = {e}. The operations
U and N induce an interesting algebraic structure on P(X). As we
have seen already, both of these operations are idempotent, commutative,
and associative. Furthermore, they jointly obey two distributivity laws.
The algebraic structure can be further strengthened by considering also
the unary operation derived from complementation relative to X and
the partial ordering relation < given by inclusion. Those who are
familiar with the elements of abstract algebra recognize 2(X) with
this structure as a Boolean algebra.

The set AN B = (A— B)u(B— A4) is called the symmetric
difference of A and B. If 4, B € #(X), then 4 A B being a subset of
A v B we have also 4 A\ B e 2(X). There are several identities invol-
ving the operations /\ and M. One finds that H(X) is a commutative
* ring with respect to these operations which has an identity, namely X,
and in which every element is idempotent. In other words, P(X) is a
Boolean ring under the addition /\ and multiplication ~. The operations
© and N are often called “cup” and “cap” or “join” and ‘‘meet.”
The same terminology occurs in lattice theory.

Let 4 and B be nonvoid sets and let g € A, b€ B. The existence of
the ordered pair (a, b) is intuitively obvious and we may also speak
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about the set of all these pairs (a, b). This set is called the product of
the ordered pair (4, B) and it will be denoted by (4 x B). Thus,

(4 x B) ={(a,b):a€ A and beB)}.

If A # B, then (4 x B) and (B x A) are distinct sets, but if 4 — B,
then these factors play symmetric roles and we have only one product
which we denote by 4 x A or A2. In axiomatic set theory the ordered
pair (a, b) is constructed as follows: One of the axioms which was
explicitly mentioned earlier states the existence of nonordered pairs.
In particular, it implies the existence of the sets {a}, {4}, and {a, b}.
By the same principle we may form the nonordered pair {{a}, {a, b}}
which we call the ordered pair and denote by (a, b). This set really has
all the characteristic properties attributed to an ordered pair: It is
asymmetric and the nonordered pair {a, b} is determined by (a, b),
namely, it is its sum. An alternative definition of an ordered pair could
be (a, b) = {{a}, {{b}}}. Ordered triples can be easily defined in terms
of ordered pairs: (a, b, ¢) = (a, (b, c)). More generally we can introduce
ordered n-tuples by using ordered (n — 1)-tuples as follows:

(@5 - @3) = (a1, (ag, ..., ay)).
The set
(Ay X ... X 4,) = {(ay, .. 8,) 101 EA, ..., 0, € A,}

is called the product of the ordered n-tuple (4y, ..., 4,)of sets 4, , ..., 4,, .
The sets 4,, ..., A, are the factors of the product (4, X ... X 4,).
It is important to realize that the product is defined only when the
distinct sets of the finite family 4, , ..., 4, have-been arranged in a
- definite order. If all these sets coincide, say A, = ... = A, = A, thenthe
product (4 X .. X A) = A X .. x A= A" is uniquely determined
by 4 and the number of factors .

Any subset R of the product set (4 x B) is called a binary relation
on the pair (4, B) or between the elements of the sets of the pair
(4, B). If A = B we speak about a binary relation on A or between
the elements of 4. If (a, b) € R we say that the relation R holds for
the pair (a, b) and we express this fact by writing @ R b. In practice,
various other symbols might replace a R b, e.g.,, a | b, all b, a~b,
or a < b, but even then it is worthwhile to interpret the relation as a
particular subset R of (4 x B).

The inverse of a binary relation R on an ordered pair (A4, B) is defined
as a binary relation on the pair (B, A):

R ={(b,a):ac A, beB, and .(a, b) € R}.
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In the special case 4 = B both R and R-! are subsets of 4 X A and it
might happen that R = R-! in which case R is called symmetric. The set

I = {(a,a): ac A}

is called the diagonal of the product 4 x A.If Rissuchthat < R, then
it is called a reflexive binary relation on the elements of 4. Antireflexivity
means that a R a never holds and antisymmetry expresses the additional
fact that at most one of the possibilities @ R b and b R a can take place.
For instance, if 4 is the set of all straight lines in the plane, then
parallelism || is a symmetric and reflexive relation while orthogonality
| is symmetric and antireflexive. Set theoretical inclusion C gives an
example of an antisymmetric binary relation on the set of all subsets
P(X) of a set X. If a Rc whenever a Rb and b R ¢, then R is called
transitive. For instance, || and C are transitive relations while | is not.

Parallelism gives a simple example of one of the best-known types
of binary relations: An equivalence relation is a reflexive, symmetric,
and transitive relation on some set 4. Another known type is linear
ordering. This means an antisymmetric and transitive relation < such
that if @ 7 b then @ < b or b < a. If the last requirement is omitted
we speak about an antireflexive partial ordering. A reflexive and transitive
binary relation < is called a reflexive partial ordering. Notice that a < b
and b < a might hold simultaneously even if @ and b are distinct
elements of the set A. For instance, any equivalence relation is a
reflexive partial ordering.

A function f on a set 4 with values in another set B can be most
easily defined by its graph which is a subset of the product (4 X B).
A relation F < 4 x B will be called the graph of a function f:4—B
if for any ae A there exists exactly one b€ B such that (a, b) eF.
If the sets 4 and B are distinct no confusion can arise: The function
J: A— B is determined by the ordering (4, B) which is now written
as (4 x B). It might happen that F and F-! are both graphs in which
case the associated functions are denoted by fand f1. If A = B, then
f and f~! are distinct or not accordingly as F # F-! or F = F-1. If
J7! exists, then f is called invertible and f~1 is its inverse. By our definition
F~1is a graph only if for every b € B there is exactly one @ € 4 such that
(a, b) e F. Thus an invertible function f: A — B maps A onto B and
as such yields a one-to-one correspondence between the elements of 4 and B.
Although a one-to-one correspondence could be viewed as a symmetric
relation 4 2 B, it is preferable to keep the asymmetry so that a one-to-one
correspondence is nothing but an invertible map f: 4 — B. If distinct
elements of 4 are mapped into distinct elements of B then f:A—B
is called injective and if f maps 4 onto B then it is called surjective.
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In intuitive set theory the existence of infinite sets is taken for granted.
For instance, one can be easily convinced that the natural numbers
1,2, 3, ... may be collected in a single family {1, 2, 3, ...} which is a set.
As soon as an infinite set is given, others can be constructed by ele-
mentary set theoretic operations, e.g., by taking the set of all ordered
pairs or the set of all subsets of the given set. For it is assumed that
the ordered pairs (x,y) where x€ X and ye Y can be considered as
the elements of a single set X X Y and similarly there is a set Z(X)
called the power set of X which consists of the subsets of X:

PX)=(A: 4 < X}.

In axiomatic set theory the existence of the sets {1,2,3,...}, X X s
and 2(X) for any X, Y can be proved from the axioms. We can make
an easy compromise by taking the existence of these sets as axioms.

The first significant set theoretic result of Cantor concerns a classi-
fication of infinite sets. Two sets 4 and B are called equivalent, or of
the same cardinality, if there exists a one-to-one correspondence f : A —B
between their elements. If such a one-to-one map exists between A
and B we write A ~ B. It is clear that 4 ~ A for any set A and also
that A ~ B implies B ~ A. A simple reasoning shows that if A ~ B
and B ~ C, then A ~ C. Two finite sets are equivalent if and only if
they have the same number of elements. The concept of equivalence
is of primary importance in the case of infinite sets when it can be
used to distinguish between various infinite sets.

Following Cantor we prove:

No set X is equivalent to its power set P(X).

It will be sufficient to prove the following proposition: If 2 is a
subset of #(X) whose elements can be brought into a one-to-one
correspondence f : X — 2 with the elements of X, then 2 is a proper
subset of Z(X). In order to construct a subset A of X not belonging
to 2 we consider the image points f(x) and distinguish between the
possibilities x € f(x) and x ¢ f(x). Thus we define

A={x:xeX and x¢f(x)}

By the one-to-one correspondence f: X — 2 for every Q in 2 there
is a unique x in X such that f(x) = Q. If xef(x) =0, then x ¢ 4,
so A # 0, and if x ¢f(x) = Q, then x€ 4, so again 4 # Q. Thus
A is not an element of 2 and consequently 2 is a proper subset of Z(X).

Cantor’s theorem shows that there exist nonequivalent infinite sets.
For example, {I,2,3,...} is not equivalent to the set of its subsets.



