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As in the first edition, the purpose of this book is to present an extensive range and
depth of topics in discrete mathematics and also work in a theme on how to do proofs.
Proofs are introduced in the first chapter and continue throughout the book. Most
students taking discrete mathematics are mathematics and computer science majors.
Although the necessity of learning to do proofs is obvious for mathematics majors, it
is also critical for computer science students to think logically. Essentially, a logical
bug-free computer program is equivalent to a logical proof. Also, it is assumed in this
book that it is easier to use (or at least not misuse) an application if one understands
why it works. With few exceptions, the book is self-contained. Concepts are developed
mathematically before they are seen in an applied context.

Additions and alterations in the second edition:
e More coverage of proofs, especially in Chapter 1.

e Added computer science applications, such as a greedy algorithm for coloring the
nodes of a graph, a recursive algorithm for counting the number of nodes on a
binary search tree, or an efficient algorithm for computing a® mod n. for very large
values of a, b, and n.

e An extensive increase in the number of problems in the first seven chapters.
e More problems are included that involve proofs.

e Additional material is included on matrices.

e True-False questions at the end of each chapter.

e Summary questions at the end of each chapter.

o Functions and sequences are introduced earlier (in Chapter 2).

Calculus is not required for any of the material in this book. College algebra is
adequate for the basic chapters. However, although this book is self-contained, some of
the remaining chapters require more mathematical maturity than do the basic chapters,
so calculus is recommended more for giving maturity, than for any direct uses.

This book is intended for either a one- or two-term course in discrete mathematics.
The first eight chapters of this book provide a foundation in discrete mathematics
and would be appropriate for a first-level course for freshmen or sophomores. These
chapters are essentially independent, so that the instructor can pick the material he/she
wishes to cover. The remainder of the book contains appropriate material for a second
course in discrete mathematics. These chapters expand concepts introduced earlier and
introduce numerous advanced topics. Topics are explored from different points of view
to show how they may be used in different settings. The range of topics include:

Logic-Including truth tables, propositional logic, predicate calculus, circuits, induc-
tion, and proofs.

Set Theory-Including cardinality of sets, relations, partially ordered sets, congru-
ence relations, graphs, directed graphs, and functions.

Algorithms-Including complexity of algorithms, search and sort algorithms, the
Buclidean algorithm, Huffman’s algorithm, Prim’s algorithms, Warshall’s algo-
rithm, the Ford-Fulkerson algorithm, the Floyd-Warshall algorithm, and Dijkstra’s
algorithms.

xiii
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Graph Theory-Including directed graphs, Euler cycles and paths, Hamiltonian
cycles and paths, planar graphs, and weighted graphs.

Trees-including binary search trees, weighted trees, tree transversal, Huffman’s
codes, and spanning trees.

Combinatorics-including permutations, combinations, inclusion-exclusion, parti-
tions, generating functions, Catalan numbers, Sterling numbers, Rook Polynomi-
als, derangements, and enumeration of colors.

Algebra-Including semigroups, groups, lattices, semilattices, Boolean algebras,
rings, fields, integral domains, and polynomials.

There is extensive number theory and algebra in this book. I feel that this is a
strength of this book, but realize that others may not want to cover these subjects.
The chapters in these areas are completely independent of the remainder of the book
and can be covered, or not, as the instructor desires. This book also contains finite
differences, and other topics not usually found in a discrete mathematics text.

®_Organization

The first three chapters cover logic and set theory. It is assumed in this book that an
understanding of proofs is necessary for the logical construction of advanced computer
programs.

The basic concepts of a proof are given and illustrated with numerous examples.
In Chapter 2, the student is given the opportunity to prove some elementary concepts
of set theory. In Chapter 3, the concept of an axiom system for number theory is intro-
duced. The student is given the opportunity to prove theorems in a familiar environ-
ment. Throughout the remainder of the book, many proofs are presented and many of
the problems are devoted to proofs. Problems, including proofs, begin at the elemen-
tary level and advance in level of difficulty throughout the book.

Relations, functions, and graphs are introduced in Chapter 2. Functions are then
continued in Chapter 4. However, the development of functions in Chapter 4 is inde-
pendent of the material in Chapter 2. Similarly, the development of graphs in Chapter 6
does not depend on their development as relations in Chapter 2.

Permutations, and sequences are introduced in Chapter 4 as special types of func-
tions. Algorithms for matrices are introduced and further properties of matrices are
developed, which will be used in later chapters on algebra, and counting.

Permutations are used for counting in Chapter 7 and also for applications in alge-
bra and combinatorics in later chapters. Again, the material in Chapter 7, while related
to Chapter 4, can be studied independently.

Chapter 5 is independent of the previous chapters except for the matrices in the
previous chapter. Algorithms are developed. The complexity of algorithms is also
developed in this chapter.

Many elementary concepts of graphs, directed graphs, and trees are covered in
Chapter 6. These concepts are covered in more depth in Chapters 12-14. Chapter 6 is
independent of the previous chapters.

Chapter 7 is the beginning of extensive coverage of combinatorics. This is contin-
ued in many of the chapters including Chapters 10 and 11.

Chapters 8 and 16 cover the basic concepts of algebra, including semigroups,
groups, semilattices, lattices, rings, integral domains, and fields. These chapters use
Sections 3.4, and 4.2 for examples of groups and rings. Chapter 8 is necessary for the
applications in Chapters 15-16.
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In many ways Chapters 9, 10, and 11 form a cluster. Recursion is continued in
Chapter 9. In addition to the standard linear recurrence relations normally covered in
a discrete mathematics text, the theory of finite difference is also covered. Chapter 6
should be covered before this chapter unless the student already has some knowledge of
recursion. Chapter 10 continues the counting introduced in Chapter 7. It covers topics
introduced in Chapter 7, such as occupancy problems and inclusion-exclusion. It also
introduces derangements and rook polynomials. It is closely related to Chapter 9. Many
of the same topics are covered from different points of view. One example of this is
Stirling numbers. However neither chapter is dependent on the other.

Chapters 9 and 10 are tied together in Chapter 11, where generating functions
are used to continue the material in both chapters. In particular, generating functions
provide a powerful tool for the solution of occupancy problems.

Chapters 12-14 continue the study of trees and graphs begun in Chapter 6. They
obviously depend on the material in Chapter 6, but are virtually independent of most
of the preceding chapters. Many of the standard topics of graphs and trees are covered,
including planar graphs, Hamiltonian cycles, binary trees, spanning trees, minimal
spanning trees, weighted trees, shortest path algorithms, and network flows.

In Chapter 15, algebra and combinatorices are combined for the development of
Burnside’s Theorem and Polya’s Theorem for the enumeration of colors. It primarily
depends on a knowledge of permutations found in Section 8.4.

When teaching a beginning course, I normally cover Chapters 1-5 in their entirety,
Sections 7.1-7.4, and the first three sections Chapter 6. As mentioned previously, the
material in the first seven chapters is arranged for maximal flexibility. The following
chart shows the required prerequisites for each chapter.

Chapter Prequisite Chapters or Sections
Chapter 1 None

Chapter 2 None

Chapter 3 Sections 1.1-1.4 and 2.1

Chapter 4 None

Chapter 5 Sections 4.1-4.2

Chapter 6 None

Chapter 7 None

Chapter 8 Sections 2.6, 2.7, and 3.4
Chapter 9 Sections 5.1-5.3

Chapter 10 Chapter 7
Chapter 11 Chapters 9 and 10
Chapter 12 Chapter 6
Chapter 13 Chapter 6
Chapter 15 Chapter 8
Chapter 16 Chapter 8

W Supplements

A solutions manual is available from the publisher with complete solutions to all prob-
lems. A website is available at www.prenhall.com/janderson. This website includes
links to other interesting sites in discrete mathematics, quizzes, and supplementary
problems. In addition, there are two problems oriented paperbacks that can be used
with the textbook: Practice Problems in Discrete Mathematics (407 pp.) by B. Obrenic
and Discrete Mathematics Workbook (316 pp.) by J. Bush. The first consists entirely
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of problems with answers/solutions. The second contains an outline of subject, sample
worked out problems, and problem sets (with answers). Each of these two supplements
is free when shrinkwrapped with the text. As stand-alone items, they have prices. So
the order 1SBN for the textbook plus the free Obrenic supplement is 013-117279-4.
The order ISBN for the textbook plus the free Bush supplement is 013-117278-6.
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