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Three-moment equation, load coefficients, formulas for rapid compu-
tation of support moments (span moments and shearing forces) in
cases of various span loads and span lengths for 2, 3, 4 and more spans

The three-moment equation®

Beams on more than two supports are statically indeterminate constructions. The
statically indeterminate quantities are the moments on the supports. The moments gt the
initial and end supports are usually taken as 0 (simple support) or as the moments of
2 fixed beam if we have a right to assume a partial or complete restraint.

The calculation of support moments is achieved through Clapeyron’s equation.2

If we denote by

boly oo lin—1)s tny {n—1). . . the lengths of the spans,
M, M, ... Mz _1), M5, Mz 1) the moments oz the supports,

S || BT ﬂg'_". ) SR:-"H) the moments for x at the spans I, to lin41),
Yor Y1+ Ym—1) Yns Y+ 1 the sag of the supports resulting from the yielding of
the abutments, :
Ay Ay ... A1)y 4n, Ajn—1) the reactions,
E the modulus of elasticity of the material,
] the moment of inertia of the beam,
b the height of the beam,
i,—1, the temperature differential between the top and bottom cross-section fibers,
a the coefficient of expansion;
furthermore, if we imagine the continuous beam as cut up at the supports, then for the
statically determinate beams on two supports thus obtained, having spans 1. 4, ... ln4 1)
we denote by
Uy, U,, Uy . . . the left (negative) reactions of thespans Iy, b, ly ...,
B,, B, . . . the right (positive) reactions of the spans &y, I, ...,
oM., *M,? . . . the moments for x in the spans L, 4 ..., ¢
" o' Dz . . . the shears for x in the spans 1, I, ...,
&1, & . . . the contents of the simple moment areas of the spans 7, {, ...

1Known as. Clapeyron’s equation; in this general form, however, it.is due to German statisticians
and (according to E. Chwalla) was first published by Bersot.

2The derivation of Clapeyron’s theovem from the fact that the line of flexure in its passage over
a support exhibits, at the point of support on either side, the same support angle of rotation as
vertex ahgle, is developed in detail in volume I This rotation angle is equal to the reaction of 2
simple beam which is loaded by the moment area divided by E.J.
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6 MY, six times the reaction of the simple moment area (815 Ty) - - - T at the left
supports 0 ... (@—1) ) :
6B, six times the reaction. of the simple moment area(§,, F,) ... §u at the
right supports: I.... ()8 ] pheady ;
~ BMY, six times the reaction of the simple moment area §, at the left support I
6 ””5!.3', six times the reaction of the moment area §; at the right support II;

then, by Clapeyron's equatiqn we have for constant |, E, b, (2,—1#,): -

Miz— 1t + 2 M (ln+ Y 1) + Mig vyl 41y =

—8aEJ (4, -,t,)'l’_'iéﬁ_‘—’. ’s | | (1)

When the supports are unyielding and the temperature diﬁeteqccs are neglected we |
8¢t Yn = Yin41)==Ym—1) and .1 =1l,=0, and (1) becomes ? B

MEonb 2 M g )+ M gy = — 608, + R (@)

The left side of (2) contains the statically indeterminate quantities M; __ gy, M5,
Mz +1) of three consecutive supports as well as the lengths of two intervening spans
(members) ; the right side depends on the loading and the lengths of these two spans. - -

We can thus set up (n—2) equations for 7 spans, and the two missing equations
come from the characterization of the end supports, whose moments in the case of
simple supports are to be put equal to zero. o A :

From the (7—2) equations we can (best by elimination) compute the 7 support
moments as well as derive formulas for their calculation. :

In the tables that follow, there will be found the values of 68, and 679, 1 1 for
the loadings most frequently used. S :

In conjunction therewith we have entered the uniform substitute load g; which
produces the support moment of the same magnitude, in order to make possible the use of

%

Pl : 18
the simpler formulas for uniform loads |6%Y bzw. 6 7B = g%] :

The equal load coefficients g, are serviceable only for the computation of support
moments. : :

,3The negative support moments are denoted by the Latin letters M, the positive span moments
by the German letters M, the spag sequence by the Arabic numerals 1,. 2, 3, ...m, the support _
sequence by the Roman numerals I, IT, . 9 : : :

in the formulas, (n— 1), n, (n-}1)  correspond to the Arabic numerals; (7 — 1), % @41)
to the Roman numerals. : g j
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They can be used in the case of symmetric loading, where the reactions are equal on
the left and right, in end spans as well as in central spans; in loadings, however, where
unequal reactions occur, they can be used only in end spans in the case of hinged ends.

The values 6™ and 6MB are given in volume I for 53 distinct loading cases, with
pumerous subtables for load positions or load ends at the tenth- and twentieth-points.

In the following tables of load coefficients¢ only 17 of the more important loading
cases are given; for the other cases, the reader is referred to volume 1.

Concept and origin of support moments

Every beam resting on more than two supports (continuous beam) is, for calculation
purposes, a beam on two supports whose span length is equal to that of all the spans of
the continuous beam.

The middle supports are point loads acting on the beam from below ; their magnitude
is at first unknown, but is determined numerically through the fact that its lifting effect
on the beam at the point of application of the load is equal to the sag caused by the actual
loading frem above. i

These point loads, unknown in magnitude at first, are the reactions of the middle
supports.

" Because the moments on a single-span beam, which are produced by these reactions
and tend upward (negative), are (as a rule) greater at the support points than the down-
ward (positive) bending moments of the factual load, there arises in the superposition of
the negative upon the positive moment areas an excess by way of negitive bending
moments (tending upward), which are called support moments.

In the center of the spans, on superposition of the negative upon the positive moment
areas, the positive moment areas usually preponderate; the latter are called span moments.

However, there can also occur positive support moments and negative span moments
in certain cases of loading.

Thus span moments and suppott moments are the difference of two moments acting
on a one-span beam, where the positive are produced by the incident loading, the negative
by the reactions. i

In other words: where the continuous beam bends upward we have an upward pull,
and we then speak of negative moments; where the continuous beam bends downward we
have a2 downward pull, and we then speak of positive momeants.

4T ranslator’s mote: Sometimes called “load terms.” Cf. A. Kleinlogel, Rigid Frame Formulas,

Frederick Ungar Publishing Co., New York, 1952, Besides, our “coefficients” are / times Kleinlogel's
“terms.”
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Load coefficients
Values for 6%8, and 6 "Nin41) for different loads,
equal load coefficients g,
No. Tyﬁe of lOId 6 gz%,, 8 mg[(,, 4+
Load P concentrated g 5
at-an arbitrary point P _“T @+ a) P a‘T (+b)
© e B p X or ) or :
1), n 2 2 % 2
, b Py ap (ln—an) P41y b 1y (I?n+l)"‘b(n+l))
uy b , la 1)
] 04 | 9 9 : ; ; 2 e
”—Lﬂﬁj—lmJ'” _4Pnan(tn~ af) [gE=4P(ﬂ-i-l)-b(’l-f-:)(Ilﬂ+1)"'b12"+1)J
o4 Y
Load P concentrated ,’
at center of span
8 b2
;) T g e
O pfih 3
it ' gE=15-" ‘ ;
l" 3 o
e N B Po+nlnty
% +Y) .
i '[9E= 1,5 Pmy
_ ’ n+1)
- [
2 symmetrical single |
point loads P
@ g 2 8 B 3P, g, (ln‘_Agn)
/’l'f/i"L—Lx”- s 12 P, In (bg — 9n)
= v
b e 8Pt 1) 8+ 1) (a4 1) — 8rag 1)
f‘_fmr}i’l "t ﬁval 12 Py 4 g Do k) G )
n In1) [95:= n+1) lf'-f-{') m+1)"Fn+1)|.
" l.n +1)
A
- Uniform
loading ¢
®

g(n+lll(3n+l)
.4




E o, Load coefficients
Values for 628, éqd 8RR, 41y for different loads,
" equal load coefficients gz
‘No. Type of load - 67B, BTy, 1)
Uniform load q' : Qu=0n'8p} 8= 3y Qn+1)=4m+1) 2 +1 2=3@+l
® =1l c=0Cp; d=dn; X=Np|l=ln41) ©=Cm+1) f=fn+1
Qn(c+d) (282 —c?—d? e Q(n+1)(e+f)(2.l’——e’——t‘?)
of
: 41 41
Qu-2x:@B—2x—053Y | Quin2(—a)[4lz—2a" —2a9—05a7)
4l B, 5
e [QE__.a-_sf& Sl
' : / 4 o fon+1)
Note: Py ax OCCULS 10 X |
Uniform load ¢ Qu=10Gn-dn I=l; d=d, Qu+1=090m+ 90 +1 l=1ln +1)
at left support =X, |[e=¢em41) 9=dui1n X=Zm+1
(3 T e P Qnd (2l.’_d__’l Q(n+l) 4 e) (l' =6} or
== e 41 7% G
o e B
b5 Q-2x (20 —d7) Q-2 —2) [P—(—¢7]
n%————w#? 4 i 41
o 4-6%B,] - 462Uy 11
: 2 . e+

Note: By qy OCCUrS in X

-

Uniform load ¢
at right support

.

1R-1); - n

@

%' J i :
a4 1)
1

Qu=tufy =k ¢=

Qo+ l?—c?)
‘41

—

t=Tn+y

Qu+y-f@¥—17
i

48U 4
sy o
n+1)

‘Uniform load ¢
symmetrically located
@ s Tk
fnd) 7
bl

Y (net)

‘ [Qn"han]
Qlen+ dp) (2 é‘—' c?:"" di)

& Q (38 —sd)
(3&-“%)

[QE= - On

 [Qu+n=90+1 80+
Qo + (0 + 1+ d@ 128 —c?—0)

"Q(" +4 (3 (n 41— a(2n+ 1))‘

(8% sn— Uy 4 n)}

l?n+l) ;

1
[9E== 8 Q(n +1)

Qa+n=A0+nfa+y 1=kt



Load coefficients

Values for 68, and 6y, 4 ;) for different loads,

equal load coefficients g,

No.  Type of load 6448, i 6¥Ain 41y
Triangular load with maximum T I3
ordinate ¢ at left support Sy
= or="00 |
ny n 16
: 2wt ln+y
| 15
e
. 8%
7 u [9E= : (1u5+ 1)] |
Triangular load with maximum
ordinate # at right support —2:"TI?‘
—_— 8¢
e L *
; Tt nlat+n
t%} r
Re7)
2 ? T4,
PR— [gF*%;tv.]
Trapezoidal load :
larger loamcgnatc ¢, at the -
left, smaller ordinate 1, at the t :
right support a(7 l;:- ‘Stz'f)
. _Thn+88,
L Ig= i
s T 1?..4.1) (Stl(n+1|+’zL.7t2(n+l)
60
%:, T [0E=3t14u+1)+7f2(n+1)]
bty 15
Trapezoidal load. -
larger 'lpazs ordinate #; at the :
right, smaller ordinate tg at the B (8t + 7t, 4]
left support exey 7 :
® 8hn+Ttn
)

fn 41 (74 n+1+ 8o 1)
60

74 81
[9E= __lin+n;l; 24a+n]



Load coefficients G T.
Values for 6798, and 6%, 1) for different loads,

equal load coefficients ge
No. Type of load 6y, 62Uy, 4 1)
Triangular load with maximum 5
ordinate ¢ at the center Htaln
- - 32
by
9E= 4
i 5t +1) fn +1
32
6t
—
Triangular loads with maxi- *
mum ordinate # at the supports Btaln
and 0 in the center of the span 32
3
|5 :
; Btntnln+y
32
31
[ e ‘”8 + n]
tala (lnt-bo) [, Ba
82 ot
 tallnt e [« , bR
Special cases:
b 2 Nn :
Tt3s 678, = Gmw'(u-}-l) - 0,284 tala
3
_5— = 5268 n
1 ;
5 =0,246 ,
1
3 =0213 ,
1
_ ¥ =0,189 ,
b . 9
Li ta+nlo+n (ot n+Diat+1) (5 o bl + u)
—————ue _
L —— % 5 Ae Tt
el g ___tm+l)(l(n+l)+b(»+l)) & b_(u+n -
B + |
1) T+




Load cogﬁcients

For equal spans lh=lnt1 and  equal symmetrically-
= Pn.+1) for equal uniform loads, symmetrically-locat
tude, and triangular as well as trapezoidal loads the val

1. P(l’——a.’)%

3 2
2. TPl

3. 6Pg(l— g

g
4 =

Qe+d) (222 — o8 — g9

21
Qd (27 — a9

6. s

7 Q4o (2—c)
e e

S b
k Pl v
18, 16”

5, =0 — )y
X 2

7
3
9. 30tl

4
3
10. 15tl

8
11. 30 (7t,+8t,)

18
12. o5 (8t +7t,)

8
. Values for 6“8,. and 679, ., for different loads,
; equal load coefficients g, ;
No. ! Type of load : Gm%n 6“2{(,.}.1,
2 Symmetrical triangular loads
. maximum ordinate # :
174, 0
Ui U AN el 128
sl e ST
% '_’{'I ,9E=§’n] |
(n=1) t;;l/il‘l“l—l/zl: s > ; ! .l7t‘n +1 l(sn +1)
F YIETRE - 128
=P s o
4 ém_ 1 [
n ¢ : hne1) = — ‘(’l'l' l)]
. g 32
Patabolic load with maximum
ordinate # at center of parabola
L
@ e 54
rofee] ety
tm o +1
——t 5
)
ﬂ. - 5 4
bney e [QE—‘- % Un+ u]

located concentrated loads P, —=
ed uniform loads of equal magnij-
ues 6 become 6 [Mgg, + R g))

8
— 8
14, l6u

i (4 b)( m) &
16— — 5+
17

¢
16. 64tl

2

Note: In order to obtain the equal
load coefficient gy it is necessary
to multiply the equations by % :



S'u'ppoit Moments

As we know, the support moments can be computed immediately from Clapeyron’s
equation. The critical (maximal) values for the various support moments, however, do not
occur in the case of one and the same/loading. Consequently the support moments would
have to be computed for each case of loading, whereas, in every instance, only one particu-
lar case is of interest. This inconvenience can be avoided by finding the general solution of
Clapeyron's equation and grouping the values of the support moments separately for the
loading of each individual span. In order to obtain the critical values, we need then merely
add the values arising from the single loads on the spans in question. The solution of

- Clapeyron’s equation for two, three and four spans follows.5
Denote by: : 3 BT
My, "My, My the moments on the supports I, IT, III for load in span 1
*My, *My, *Myy the moments on the supports I, II, III for load in span 2
$M;, *My, *My the moments on the supports I, II, III for load in span 3
‘M;, ‘Mz, My the moments on the supports I, II, III for load in span 4
then, referring to the notation on p. 1 ff., we have

A. Beam on 3 supports—2 spans and 7, and 7,

1

1 e et S G IR

Mx_ S TL) 6B, )

. b

WMy= — 6

T T2 A ?I’ )
If , and [, then :

g M MW
M= — P and M= (5)

B. Beam on 4 supports—3 spans 1, lz' and 7,

g A 20+ 4) e :
M= RGO ©)

e 4(11+l.)(ll:+z,)—z,'[““’3="6”"*'2“@‘3—1") ] (@
S 4(a+l,)(ll:+z,)—zg"m‘s ®)
il e i
M= i;l:lj'_;’g‘) s [6 T, 6 Mgy, . 5‘(711:—_1,—) (10)
My = 20, +14) By, = (11)

B RS AT A A

5See volume I for the formulas for beams up to and including ten spans, freely supported and
fixed at the ends. .



‘ iO ' ; Support moments
/ Special cases:
1. Ifthe 3 s'pans are equal, thatis [, =, =, then:

2y L Y- %, (12)

151
i s
Mi= o6, (14)
Sy= .6, | - (15)
My — — %7[4 6”?8—69191,]. A (16)
.Mn=__i.sw, | MR

2. If the spans are unequal and only uniformly dxstnbuted loads are applied — p,
in span 1, p, in span 2, pg in span 3, then:

i s e
Sl iF oy S us
e %) (ll:+ =1 . e
e R b

B i G+ o T e
S e g ly? agl

i) G+ )= 2
Note: The denominator 4 (b + &) (& + L) — 1,2 - is the same for all moment values,

3. If in the case of uniform loading we have also - 7, = l,=1, , then the above equa- ,
tions become:

1 . 1 ;
My=— g, (24) My = Rt 27)

. TRae i
My = — - 55 P 54 (26) My = — 307 » (28)

1 s i 1 ;
M= ol (26) M =—=p, P (29)

and for uniform loading applled simultaneously in all three spans (dead load)

M= My=— *—Pl’ : ‘ (30)



| Support moments
4, If L=y (eﬁual end spans) and [, =mnly, then we have:

SR e 0
M"— 9 4(1 +ﬂ)’—:n’ g

__'__P.lx 24 nnd
'MI 4 4(L4n)'—nt

M. — 1y’ i i
: M‘ 4 ‘gdfap—n
X i p ll n
My 4 a(lFw—nt

P L? _(2"*"”)”a
4 Al fnt—n?

: _ k' (A
T fz A1+t —nt

S My =

 and for simultaneous uniform loading in all 3 spans (dead load)

@+n(1+2Y) pi?

M= My —

C. Beam on 5 supports—4 spans 1, I, 7, and , |

' Denominator: N = (i +1) (40, + 1) O + &) — T — la+ &)1

sap e Dl e USRS )
N 2+l 2 S‘l_ +1]
l(l+ A S8 6%y, 1
My = — ” ‘ e S
; [6 B %u, 2‘(&,4—1.,)] B TR
AT
My = —2 ”N 1 [2(1’:_ 0y -6 P, — 6”91]

1My = Ly (l +l) .6 7B,

My = — 24, +”" +")[6m23 — 6y, . 2“1+ ]
1

My =

2m+;m+m[ Iy

N 41 )sm$‘ GW]"

11

(31)

(@82

(33)

(34)

(35)

(36)

61

(88)
(39)

(40)

- (41)

42)

{43)

(44)

(46)

(46}
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My =—

My =

My == —

My = —

Suppo;tmqménts,
(-
sy,
lw(l+l|)[ ® ® ]
TR I za;+u
o+ 4 ®» ] =
NoOREG+n i T g 2(l.+l) st
1 gmy [aMtd) ]
2414, . u‘[ Wk
Special cases:
1. Ifthe4spmsueequal (h==1l, =1l =1,), then we have:
15
My f-=—-5—67-69‘8,

2. If =17, (equal end spans) and ly =1l = nl; (equal interior spans), then:
. 1 [ n? - ]
Myme —— . eW e
My 2(n+1)z, . f"Sllsn-;-snﬁ""l
SN — —GRYy . | _em :
I I(Bn-} 6n%) . [ﬁ . (n—{—-'l)] 8 ’2‘*2(7.4-1)

My

oo (4698, 15.6 3y

1 5
'M[ = m[&s’ﬂ,-—ﬁmﬂ.]

,...

WA= g N,

My = %‘ 6 B, = — 4.2y

My o= 6, — 4.6 9B 4.oary
My = %[69% ~46Ty]—— Ly,
1Mm=—'g;- .6 Mg,

Mgy = 5‘_[4 6P, — 6 Ty |

W= o [4-6RY, 15,69,

My = — 516"5—1 6 |y,

(47)
(48)
(49)

(50)

(51)
(62)
(68)
(54)
(65)
(56)
(67)
(58)
(59)
(60)
(61)

(62)

(68)

(64)



Suppoft moments 13
’,Mh‘ =‘11(s1.n+6;,*) [2(1:-;:)'6“’3:”'6#% (45
it 11(121:"-{-”2871 T o Tk wo)
My = i’(s‘n“'fw"ﬁ“‘%* ©7
i ._("'é%_::_'_;’n,) [s P, — 6 MY, m] (68)
U= rpa e o [Z(i?—ﬁ o 7m, — 67, i
My = (8”1 e 578 10y
e ,‘(12nf'+n28u+ T (71)
*Myy = t(?n%-"ﬁ_i?—) [6 P, — 6 My, . E(xn_-;-{)] (72) |
st=_ll(8n:-6n’) [Z(I,i!—n) s O ’I] 9(11{- " Al g
My =— T2 -:-1)1 g [m’+ ] div

3. If only uniformly distributed loads are applied, then in the case of unequal spans:

Denominator N (see equation 38, p. 11)

i =“8(£1-l;81,) [l ’(IN+ 4 1] 5
"y = p’:’s [l“ “"; l‘)gl “2([,1.’4- z,))_z(l,ix—zz»] o
i e pll“s(z(z ’fi— D l)lg (23;_ ‘ @
af =2l b (78)
< L (79)
Wty p,4lg’ (1 oy (lll:_ ls)) 2, + 133’ Iy + 1) (80)
M= BE( Uy - e DLt i
My = pt; (l;—?l (82)



