Ten-Division Influence Lines for Continuous Beams

Dr.-Ing. GEORG ANGER

Ten-Division Influence Lines for Continuous Beams

Dr.-Ing. GEORG ANGER

Translated from the German by CHARLES J. HYMAN

Ordinates of Influence Lines
and of Moment Curves for Continuous Beams

Influence Coefficients of Cantilever Moments

Eighth edition, revised and enlarged

FREDERICK UNGAR PUBLISHING CO.

CONSTABLE & CO LTD
10-12 ORANGE STREET, LONDON W.C.2

Authorized Edition

Translated from

Zehnteilige Einflusslinien für durchlaufende Träger Ordinaten der Einflusslinien und Momentenkurven durchlaufender Träger von 2 bis 5 Feldern

Band III

Copyright 1956 by Frederick Ungar Publishing Co.

Printed in the United States of America

Library of Congress Catalog Card Number 56-11450

CONTENTS

	page
Three-moment equation, load coefficients, formulas for rapid computation of	
support moments (span moments and shearing forces) in cases of various	114
span loads and span lengths for 2, 3, 4 and more spans	7-71
Three-moment equation	1
Origin of support moments	3
Load coefficients	4
Support moments	9
Span moments	15
Shearing forces	16
Reactions	17
Loading arrangement for uniformly distributed movable loads for obtaining	
maxima and minima	18
Influence lines	20
Influence lines for bending moments	21
Influence lines for shears	21
Critical influence lines for bending moments	23
Fixed-point distances	23
Analysis of continuous beams of more than 4 spans	24
Influence of the moment of inertia on the calculation of support moments	27
How to use the influence-line tables for unequal moments of inertia	28
Beam on 2 supports	31-34
Influence lines for simple beam on 2 supports	32
Influence lines for beam on 2 supports, one end freely supported, the other end	
fixed	33
Influence lines for beam on 2 supports, both ends fixed	34
그게 많은 이 경우를 보고 있는 것이 없는 것이 없었다. 이 그 것이 없는 것이었다면 없어요. 없는 것이 없는 것이었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없어요. 없는 것이었다면 없는 것이었다면 없어요. 없어요. 없어요. 없어요. 없어요. 없어요. 없어요. 없어요.	
Beam on 3 supports (2 spans): Ten-division influence lines; critical influence	
lines; influence lines for quarter- and third-points; moments for uniformly	35-71
distributed loads; influence coefficients for cantilever moments	33-11
Beam on 4 supports (3 spans): Ten-division influence lines; critical influence	
lines; influence lines for quarter- and third-points; moments for uniformly	
distributed loads; influence coefficients for cantilever moments	73-135
Beam on 5 supports (4 spans): Ten-division influence lines; critical influence	
lines; influence lines for quarter- and third-points; moments for uniformly	
distributed loads; influence coefficients for cantilever moments	137-199
Explanation to table arrangement for the 5-span influence lines	200
가장 사용하는 사용하는 사용하는 사용하는 사용하는 사람들은 사용하는 사용하는 사용하는 사용하는 것이 되었다. 그는 사용하는 것이 되었다면 가장 하는 것이 없는 것이 없다면 하는데 하는데 되었다.	
Beam on 6 supports (5 spans): Ten-division influence lines; moments for	201 -1
uniformly distributed loads	
Influence lines for a central span in the case of any number of equal spans	246-247

Three-moment equation, load coefficients, formulas for rapid computation of support moments (span moments and shearing forces) in cases of various span loads and span lengths for 2, 3, 4 and more spans

The three-moment equation1

Beams on more than two supports are statically indeterminate constructions. The statically indeterminate quantities are the moments on the supports. The moments at the initial and end supports are usually taken as 0 (simple support) or as the moments of a fixed beam if we have a right to assume a partial or complete restraint.

The calculation of support moments is achieved through Clapeyron's equation.2

If we denote by

 $l_1, l_2 \ldots l_{(n-1)}, l_n, l_{(n-1)} \ldots$ the lengths of the spans, $M_0, M_1 \ldots M_{(n-1)}, M_n, M_{(n+1)}$ the moments on the supports,

 \mathfrak{M}_{x}^{1} , \mathfrak{M}_{x}^{2} ... $\mathfrak{M}_{x}^{(n-1)}$, \mathfrak{M}_{x}^{n} , $\mathfrak{M}_{x}^{(n+1)}$ the moments for x at the spans l_{1} to $l_{(n+1)}$, y_{0} , y_{1} ... $y_{(n-1)}$, y_{n} , $y_{(n+1)}$ the sag of the supports resulting from the yielding of the abutments,

 $A_0, A_1 \dots A_{(n-1)}, A_n, A_{(n-1)}$ the reactions,

E the modulus of elasticity of the material,

I the moment of inertia of the beam,

h the height of the beam,

 $t_u - t_o$ the temperature differential between the top and bottom cross-section fibers, a the coefficient of expansion;

furthermore, if we imagine the continuous beam as cut up at the supports, then for the statically determinate beams on two supports thus obtained, having spans l_1 . l_2 ... $l_{(n+1)}$ we denote by

 $\mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3 \ldots$ the left (negative) reactions of the spans $l_1, l_2, l_3 \ldots$, $\mathfrak{B}_1, \mathfrak{B}_2 \ldots$ the right (positive) reactions of the spans $l_1, l_2 \ldots$

 ${}^{\circ}\mathfrak{M}_{x}^{1}, {}^{\circ}\mathfrak{M}_{x}^{2} \dots$ the moments for x in the spans $l_{1}, l_{2} \dots$, $\mathfrak{D}_{x}^{1}, \mathfrak{D}_{x}^{2} \dots$ the shears for x in the spans $l_{1}, l_{2} \dots$,

 $\mathfrak{F}_1, \mathfrak{F}_2 \dots$ the contents of the simple moment areas of the spans $l_1, l_2 \dots$

¹Known as. Clapeyron's equation; in this general form, however, it is due to German statisticians and (according to E. Chwalla) was first published by Bertot.

The derivation of Clapeyron's theorem from the fact that the line of flexure in its passage over a support exhibits, at the point of support on either side, the same support angle of rotation as vertex angle, is developed in detail in volume I. This rotation angle is equal to the reaction of a simple beam which is loaded by the moment area divided by E.J.

- $6^{M}\mathfrak{A}_{n}$ six times the reaction of the simple moment area $(\mathfrak{F}_{1},\,\mathfrak{F}_{2})\ldots\mathfrak{F}_{n}$ at the left supports $0 \dots (\overline{n}-1)$
- $6^{10}\mathfrak{B}_n$ six times the reaction of the simple moment area $(\mathfrak{F}_1,\,\mathfrak{F}_2)\,\ldots\,\mathfrak{F}_n$ at the right supports I.... (n) 3
- 6 MM, six times the reaction of the simple moment area & at the left support I
- 6 MB, six times the reaction of the moment area & at the right support II;

then, by Clapeyron's equation we have for constant J, E, b, $(t_u - t_o)$:

$$\frac{M_{(n-1)}l_n + 2 M_n(l_n + l_{(n+1)}) + M_{(n+1)}l_{(n+1)} =}{= -6 (\Re \mathfrak{B}_n + \Re \mathfrak{A}_{(n+1)}) + 6 EJ \left(\frac{y_n - y_{(n+1)}}{l_{(n-1)}} + \frac{y_n - y_{(n-1)}}{l_n}\right) - -3 \alpha EJ (l_u - l_0) \frac{l_n + l_{(n+1)}}{h}.$$
(1)

When the supports are unyielding and the temperature differences are neglected we get $y_n = y_{(n+1)} = y_{(n-1)}$ and $t_n = t_0 = 0$, and (1) becomes

$$\underline{M_{(n-1)}} \, l_n + 2 \, \underline{M_n} \, (l_n + l_{(n+1)}) + \underline{M_{(n+1)}} \, l_{(n+1)} = -6 \, (^{\mathfrak{M}} \mathfrak{B}_{\mathfrak{g}} + ^{\mathfrak{M}} \mathfrak{A}_{(n+1)})$$
 (2)

The left side of (2) contains the statically indeterminate quantities $M_{(\bar{n}-1)}$, $M_{\bar{n}}$, $M_{(\bar{n}+1)}$ of three consecutive supports as well as the lengths of two intervening spans (members); the right side depends on the loading and the lengths of these two spans.

We can thus set up (n-2) equations for n spans, and the two missing equations come from the characterization of the end supports, whose moments in the case of simple supports are to be put equal to zero.

From the (n-2) equations we can (best by elimination) compute the n support moments as well as derive formulas for their calculation.

In the tables that follow, there will be found the values of $6^{39}\mathfrak{B}_n$ and $6^{39}\mathfrak{U}_{(n+1)}$ for the loadings most frequently used.

In conjunction therewith we have entered the uniform substitute load gs which produces the support moment of the same magnitude, in order to make possible the use of the simpler formulas for uniform loads 6^{m} Dzw. 6^{m} B $= \frac{g_E l^8}{l}$.

The equal load coefficients g, are serviceable only for the computation of support moments.

In the formulas, (n-1), n, (n+1) correspond to the Arabic numerals; $(\bar{n}-1)$, \bar{n} , (n+1)

to the Roman numerals.

³The negative support moments are denoted by the Latin letters M, the positive span moments by the German letters M, the span sequence by the Arabic numerals 1, 2, 3, ... n, the support sequence by the Roman numerals $I, II, \ldots \bar{n}$.

They can be used in the case of symmetric loading, where the reactions are equal on the left and right, in end spans as well as in central spans; in loadings, however, where unequal reactions occur, they can be used only in end spans in the case of hinged ends.

The values 6 MM and 6 MM are given in volume I for 53 distinct loading cases, with numerous subtables for load positions or load ends at the tenth- and twentieth-points.

In the following tables of load coefficients⁴ only 17 of the more important loading cases are given; for the other cases, the reader is referred to volume I.

Concept and origin of support moments

Every beam resting on more than two supports (continuous beam) is, for calculation purposes, a beam on two supports whose span length is equal to that of all the spans of the continuous beam.

The middle supports are point loads acting on the beam from below; their magnitude is at first unknown, but is determined numerically through the fact that its lifting effect on the beam at the point of application of the load is equal to the sag caused by the actual loading from above.

These point loads, unknown in magnitude at first, are the reactions of the middle

supports.

Because the moments on a single-span beam, which are produced by these reactions and tend upward (negative), are (as a rule) greater at the support points than the downward (positive) bending moments of the factual load, there arises in the superposition of the negative upon the positive moment areas an excess by way of negative bending moments (tending upward), which are called support moments.

In the center of the spans, on superposition of the negative upon the positive moment areas, the positive moment areas usually preponderate; the latter are called span moments.

However, there can also occur positive support moments and negative span moments in certain cases of loading.

Thus span moments and support moments are the difference of two moments acting on a one-span beam, where the positive are produced by the incident loading, the negative by the reactions.

In other words: where the continuous beam bends upward we have an upward pull, and we then speak of negative moments; where the continuous beam bends downward we have a downward pull, and we then speak of positive moments.

^{*}Translator's note: Sometimes called "load terms." Cf. A. Kleinlogel, Rigid Frame Formulat, Frederick Ungar Publishing Co., New York, 1952. Besides, our "coefficients" are l times Kleinlogel's "terms."

Load coefficients

Values for $6^{30}\mathfrak{B}_n$ and $6^{30}\mathfrak{A}_{(n+1)}$ for different loads, equal load coefficients g_R

No. Type of load	6 MBn	6 mU(n+1)
Load P concentrated at an arbitrary point (n-1)	$P = \frac{ab}{l}(l+a)$ or $P_n = \frac{a_n(l_n^2 - a_n^2)}{l_n}$ $\left[g_E = \frac{4 P_n a_n(l_n^2 - a_n^2)}{l_n^4}\right]$	$P = \frac{ab}{l} (l+b)$ or $P_{(n+1)} b_{(n+1)} (l_{(n+1)}^2 - b_{(n+1)}^2)$ $l_{(n+1)}$
Load P concentrated at center of span	of agent discount	$g_E = \frac{4 P_{(n+1)} b_{(n+1)} \left(l_{(n+1)}^2 - b_{(n+1)}^2 - b_{(n+1)}^2 \right)}{l_{(n+1)}^4}$
$(n-1) = \frac{l_n}{2} + \frac{l_n}{2} = n$ $\frac{l_{(n+1)}}{2} + \frac{l_{(n+1)}}{2} + \frac{l_{(n+1)}}{2} = (n+1)$	$\frac{3}{8} P_n l_n^2$ $\left[g_E = 1.5 \frac{P_n}{l_n} \right]$	$\frac{3}{8} P_{(n+1)} l_{(n+1)}^{2}$ $g_{E} = 1.5 \frac{P_{(n+1)}}{l_{(n+1)}}$
2 symmetrical single point loads P (n-i)	$\left[g_{E} = \frac{12 P_{n} g_{n} (l_{n} - g_{n})}{l_{n}^{3}}\right]$	$g_{E} = \frac{3 P_{(n+1)} g_{(n+1)} (l_{(n+1)} - g_{(n+1)})}{l_{(n+1)}^{l} - g_{(n+1)}}$
Uniform loading g (not) In In In In In In In In In I	$\frac{g_n l_n^3}{4}$	$\frac{g_{(n+1)}l_{(n+1)}^3}{4}$

Values for $6^{\mathfrak{M}}\mathfrak{B}_n$ and $6^{\mathfrak{M}}\mathfrak{A}_{(n+1)}$ for different loads, equal load coefficients g_{π}

No. Type of load	6 MBn	6 MA(n+1)
Uniform load q	$Q_{n} = q_{n} \cdot a_{n}; a = a_{n}$ $l = l_{n}; c = c_{n}; d = d_{n}; x = x_{n}$ $Q_{n} (c + d) (2 l^{2} - c^{2} - d^{2}) \text{or} 4 l$	$Q_{(n+1)} = Q_{(n+1)} a_{(n+1)} a = a_{(n+1)}$ $l = l_{(n+1)} e = e_{(n+1)} f = f_{(n+1)}$ $Q_{(n+1)} (e+f) (2 l^2 - e^3 - f^2)$ or $4 l$
n - anni (na) Note: Max occurs in x	$\frac{Q_{n} \cdot 2 \times \cdot (2 l^{3} - 2 \times^{2} - 0,5 a^{2})}{4 l}$ $\left[g_{E} = \frac{4 \cdot 6 \Re \mathfrak{B}_{n}}{l_{n}^{3}}\right]$	$\frac{Q_{(n+1)} \cdot 2 (l-x) \left[4 lx - 2 x^{3} - 0,5 a^{3} \right]}{4 l}$ $\left[g_{E} = \frac{4 \cdot 6 {}^{20l} \mathfrak{A}_{(n+1)}}{l_{(n+1)}^{3}} \right]$
Uniform load q at left support	$Q_n = q_n \cdot d_n l = l_n; d = d_n$ $x = x_n$	$Q_{(n+1)} = q_{(n+1)} \cdot d_{(n+1)} l = l_{(n+1)}$ $e = e_{(n+1)} d = d_{(n+1)} x = x_{(n+1)}$ $Q_{(n+1)} = q_{(n+1)} \cdot d_{(n+1)} x = x_{(n+1)}$
$(6) \qquad \qquad d_n \qquad q_n \qquad q_$	$\frac{Q_n d (2 l^2 - d^2)}{4 \cdot l} \text{ or }$	$\frac{Q_{(n+1)} (l+e) (l^2 - e^2)}{4 l} \text{ or }$ $Q_{(n+1)} (l-x) [l^2 - (l-e)^2]$
Note: \mathfrak{R}_{\max} occurs in x	$\frac{Q_n \cdot 2 \times (2 l^2 - d^2)}{4 \cdot l}$ $\left[g_E = \frac{4 \cdot 6 \Re \mathfrak{B}_n}{l_n^3}\right]$	$g_{E} = \frac{4 \cdot 6^{\frac{92}{2}} \mathcal{Q}_{(n+1)}}{l_{(n+1)}^{8}}.$
Uniform load q	$Q_n = q_n f_n l = l_n; c = c_n$	$Q_{(n+1)} = q_{(n+1)} f_{(n+1)} l = l_{(n+1)}$ $f = f_{(n+1)}$
$ \begin{array}{c c} \hline \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\frac{Q_{n} (l+c) l^{2}-c^{2})}{4 l}$	$\frac{Q_{(n+1)} \cdot f \left(2 l^2 - l^2\right)}{l}$
n 4(nos) 5(nos)	$\left[g_E = \frac{4 \cdot 6 \mathfrak{M} \otimes n}{l_n^3}\right]$	$g_E = \frac{4 \cdot 6 \mathfrak{MU}_{(n+1)}}{l_{(n+1)}^3}$
Uniform load q symmetrically located (n-1) (n-1)	$[Q_{n} = q_{n} a_{n}]$ $Q(c_{n} + d_{n}) (2 t_{n}^{2} - c_{n}^{2} - d_{n}^{2})$ $\frac{1}{8} Q_{n} (3 t_{n}^{2} - a_{n}^{2})$	$[Q_{(n+1)} = q_{(n+1)} a_{(n+1)}]$ $Q_{(n+1)} (c_{(n+1)} + d_{(n+1)} (2 l^2 - c^2 - l^2 $
n they const they	$g_E = \frac{1}{2} Q_n \frac{\left(3 l_n^2 - a_n^2\right)}{l_n^3}$	$g_E = \frac{1}{8} Q_{(n+1)} \frac{\left(3 l_{(n+1)}^2 - a_{(n+1)}^2 - a_{(n+1)}^2 - a_{(n+1)}^2 \right)}{l_{(n+1)}^3}$

Values for $6^{\mathfrak{M}}\mathfrak{B}_n$ and $6^{\mathfrak{M}}\mathfrak{A}_{(n+1)}$ for different loads, equal load coefficients g_E

ARTON CONTRACTOR OF THE PARTY O	equal load coemcients	S.R.
No. Type of load	6 ²⁰¹ B _n	6 MQ(n+1)
Triangular load with maximum ordinate t at left support	$\frac{7 \operatorname{t_n} l_{\mathrm{n}}^3}{60}$	
(n-1) L _n	$\left[g_E = \frac{7 t_n}{15}\right]$	ep co / a ben control
(n+1)	142 10 10 14 15 15 15 15 15 15 15	$\frac{2 t_{(n+1)} t_{(n+1)}^3}{15}$
(n+1)	13 Table 1 Tab	$g_E = \frac{8 t_{(n+1)}}{15}$
Triangular load with maximum ordinate t at right support	$\frac{2 t_n t_n^3}{15}$	
(N-1) - In	$\left[g_E = \frac{8t_{\rm n}}{15}\right]$	of all and another
1/10-17	7 9 A 24 2 76 - 50	$\frac{7 t_{(n+1)} l_{(n+1)}^3}{60}$
Trapezoidal load		$g_E = \frac{7 t_{(n+1)}}{15}$
arger load ordinate t_1 at the eft, smaller ordinate t_2 at the right support	$\frac{\ell_{n}^{3}(7t_{1n}+8t_{2n})}{60}$	
(n-1) t _{2n}	$g_E = \frac{7t_{1n} + 8t_{2n}}{15}$	and and sent individual
c _{Harry}	Des Helly	$\frac{t_{(n+1)}^{3} (8t_{1(n+1)} + - 7t_{2(n+1)})}{60}$
1 (not) (not)	1 - 10 - 20 - 11	$g_E = \frac{8t_{1(n+1)} + 7t_{2(n+1)}}{15}$
Trapezoidal load ger load ordinate t ₁ at the ht, smaller ordinate t ₂ at the left support	$I_n^8 (8t_{1n} + 7t_{2n})$	
ten ten	$g_E = \frac{8 l_{1n} + 7 t_{2n}}{15}$	y beni mahati kasisi desitana
62(0.1)	12-50-04	$\frac{t_{(n+1)}^{3} \left(7t_{1(n+1)} + 8t_{2(n+1)}\right)}{60}$ $\left[g_{E} = \frac{7t_{1(n+1)} + 8t_{2(n+1)}}{15}\right]$
n ton	1 (2 30)	$g_E = \frac{7 t_{1(n+1)} + 8 t_{2(n+1)}}{15}$

Values for $6 \,^{m}\mathfrak{B}_{n}$ and $6 \,^{m}\mathfrak{A}_{(n+1)}$ for different loads,

equal load coefficients gr

No. Type of load	6 MBn	6 MU(n+1)
Triangular load with maximum ordinate t at the center	$\frac{5\operatorname{t_n} l_n^8}{32}$	And sacrost Linescope S
(n-n) ln	$\left[g_E = \frac{5 t_n}{8}\right]$	$\frac{5 t_{(n+1)} t_{(n+1)}^3}{32}$
n b(n+1)		$\left[g_E = \frac{5 t_{(n+1)}}{8}\right]$
Triangular loads with maximum ordinate t at the supports and 0 in the center of the span	$\frac{3t_nl_\mathrm{n}^3}{32}$	
(n-1)	$\left[g_E = \frac{3 t_n}{8}\right]$	$\frac{3 t_{(n+1)} l_{(n+1)}^3}{32}$
n 4(n+1)		$\left[g_E = \frac{3t_{(n+1)}}{8}\right]$
Symmetrical trapezoidal load	$\frac{t_n l_n^2 (l_n + b_n)}{32} \left(5 + \frac{b_n^2}{l^2}\right)$	+ · LABERY
$(n-1) \qquad \qquad \begin{array}{c} a_n & b_n & a_n \\ & & \\ &$	$\left[g_E = \frac{t_n \left(l_n + b_n\right)}{8 l_n} \left(5 + \frac{b_n^2}{l_n^2}\right)\right]$	s. 114 alexan suspensing all s
The second separation with		Special cases:
	$\frac{b}{l}+\frac{2}{3}$; 6 ²⁰⁰	$\mathfrak{B}_{n} = 6^{\mathfrak{M}} \mathfrak{U}_{(n+1)} = 0.284 t_{n} l_{n}^{3}$
	3 5	= 0,268 ,
1. 在一种一种一种	1 08	= 0,246
10.11	1 3	=0,213 ,
	$\frac{1}{5}$	=0,189 "
(m.1) (m.1)	$\frac{t_{(n+1)}\tilde{t}_{(n+1)}^2}{}$	$\frac{(l_{(n+1)}+b_{(n+1)})}{32}\left(5+\frac{b_{(n+1)}^2}{l_{(n+1)}^2}\right)$
4/10/11 1	네 이 이번 경우를 보고 있는데 이번 사람이 되었다면 하고 있다면 하는데 하는데 되었다면 하다 하는데	$\frac{(l_{(n+1)}+b_{(n+1)})}{8 l_{(n+1)}} \left(5 + \frac{b_{(n+1)}^2}{l_{(n+1)}^2}\right) \right]$

Values for $6^{\mathfrak{M}}\mathfrak{B}_n$ and $6^{\mathfrak{M}}\mathfrak{A}_{(n+1)}$ for different loads, equal load coefficients g_R

No. Type of load	6 ²⁰ B _n	6 ²⁰¹ A(n+1)
2 Symmetrical triangular loads maximum ordinate t		A Santan apart graphs
maximum ordinate;	$17t_n l_n^3$	
(B) \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}	128	
	$\left[g_E = \frac{17}{32} t_n\right]$	
$(n-1)$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$\left[9E - \frac{1}{32}in\right]$	3
广东		$\frac{17t_{(n+1)}l_{(n+1)}^{8}}{128}$
n 1/2 (no1)		
- 4/2 - 4(n+1)		$g_E = \frac{17}{32} t_{(n+1)}$
arabolic load with maximum	36	Toda sai ja sujas sai ja svoj
dinate t at center of parabola	. 3	
0	$\frac{\mathbf{t_n} l_n^8}{5}$	
(n-1) tn	Γ 4 i	
Ln An	$\left[g_E = \frac{4}{5} t_n\right]$	
		$\frac{t_{(n+1)}l_{(n+1)}^8}{5}$
n chan	784 AMAR AND AND	bank labiba 5 and administration
L(not) - M(not)	130 14 11 188 1	$\left[g_E = \frac{4}{5} t_{(n+1)}\right]$
	it like the	[5 (n+1)]

For equal spans $l_n = l_{(n+1)}$ and equal symmetrically-located concentrated loads $P_n = P_{(n+1)}$ for equal uniform loads, symmetrically-located uniform loads of equal magnitude, and triangular as well as trapezoidal loads the values 6 become 6 [$^{\mathfrak{M}}\mathfrak{B}_n + ^{\mathfrak{M}}\mathfrak{A}_{(n+1)}$]

1.
$$P(l^2-a^2)\frac{a}{l}$$
2. $\frac{3}{4}Pl^2$
3. $6Pg(l-g)$
4. $\frac{gl^3}{2}$
5. $\frac{Q(c+d)(2l^2-c^2-d^2)}{2l}$
6. $\frac{Qd(2l^2-d^2)}{2l}$
7. $\frac{Q(l+c)(l^2-c^2)}{2l}$
10. $\frac{1}{3}$
11. $\frac{l^8}{30}(8t_1+7t_2)$
12. $\frac{l^8}{30}(8t_1+7t_2)$
13. $\frac{5}{16}tl^8$
14. $\frac{3}{16}tl^3$
15. $\frac{tl^2(l+b)}{16}(5+\frac{b^2}{l^2})$
16. $\frac{17}{64}tl^8$
17. $\frac{2}{5}tl^8$
18. $\frac{Q(c+d)(2l^2-c^2-d^2)}{2l}$
19. $\frac{l^8}{30}(8t_1+7t_2)$
11. $\frac{l^8}{30}(8t_1+7t_2)$
12. $\frac{l^8}{30}(8t_1+7t_2)$
13. $\frac{5}{16}tl^8$
15. $\frac{l^8}{16}tl^8$
16. $\frac{l^7}{64}tl^8$
17. $\frac{2}{5}tl^8$
18. $\frac{l^8}{16}tl^8$
19. $\frac{l^8}{16}tl^8$
19. $\frac{l^8}{16}tl^8$
19. $\frac{l^8}{16}tl^8$

Support Moments

As we know, the support moments can be computed immediately from Clapeyron's equation. The critical (maximal) values for the various support moments, however, do not occur in the case of one and the same/loading. Consequently the support moments would have to be computed for each case of loading, whereas, in every instance, only one particular case is of interest. This inconvenience can be avoided by finding the general solution of Clapeyron's equation and grouping the values of the support moments separately for the loading of each individual span. In order to obtain the critical values, we need then merely add the values arising from the single loads on the spans in question. The solution of Clapeyron's equation for two, three and four spans follows.⁵

Denote by:

¹M_I, ¹M_{II}, ¹M_{III} the moments on the supports I, II, III for load in span 1

2MI, 2MII, 2MIII the moments on the supports I, II, III for load in span 2

⁸M_I, ⁸M_{II}, ⁸M_{III} the moments on the supports I, II, III for load in span 3

*M_I, *M_{II}, *M_{III} the moments on the supports I, II, III for load in span 4 then, referring to the notation on p. 1 ff., we have

A. Beam on 3 supports-2 spans and l2 and l2

$${}^{1}M_{1} = -\frac{1}{2(l_{1} + l_{2})} \cdot 6^{\mathfrak{M}}\mathfrak{B}_{1} \tag{3}$$

$${}^{2}M_{1} = -\frac{1}{2(l_{1} + l_{2})} \cdot 6 \mathfrak{M}_{2} \tag{4}$$

If 4 and lo then

$${}^{1}M_{1} = -\frac{6 \, {}^{\mathfrak{M}}\mathfrak{B}_{1}}{4 \, l} \text{ and } {}^{2}M_{1} = -\frac{6 \, {}^{\mathfrak{M}}\mathfrak{A}_{2}}{4 \, l}$$
 (5)

B. Beam on 4 supports—3 spans l_1 , l_2 and l_3

$${}^{1}M_{1} = -\frac{2(l_{2} + l_{3})}{4(l_{1} + l_{2})(l_{2} + l_{3}) - l_{3}^{2}} \cdot 6^{\mathfrak{M}}\mathfrak{B}_{1}$$

$$(6)$$

$${}^{2}M_{1} = \frac{l_{2}}{4(l_{1} + l_{2})(l_{2} + l_{3}) - l_{2}^{2}} \left[6 \Re \Re_{2} - 6 \Re \Re_{2} \cdot \frac{2(l_{2} + l_{3})}{l_{2}} \right]$$
(7)

$${}^{3}M_{1} = \frac{l_{3}}{4(l_{1} + l_{3})(l_{3} + l_{3}) - l_{3}^{2}} \cdot 6^{90}\mathfrak{A}_{3}$$
 (8)

$${}^{1}M_{11} = \frac{l_{2}}{4(l_{1} + l_{2})(l_{2} + l_{3}) - l_{2}^{2}} \cdot 6 \mathfrak{M}_{2}$$
(9)

$${}^{2}M_{\mathrm{II}} = -\frac{2 \left(l_{1} + l_{2}\right)}{4 \left(l_{1} + l_{2}\right) \left(l_{2} + l_{3}\right) - l_{2}^{2}} \left[6 \Re \mathfrak{B}_{2} - 6 \Re \mathfrak{A}_{2} \cdot \frac{l_{2}}{2 \left(l_{1} + l_{2}\right)}\right] \tag{10}$$

$${}^{3}M_{II} = -\frac{2(l_{1} + l_{2})}{4(l_{1} + l_{2})(l_{0} + l_{2}) - l^{2}_{2}} \cdot 6 \Re \mathfrak{A}_{8}$$

$$\tag{11}$$

⁵See volume I for the formulas for beams up to and including ten spans, freely supported and fixed at the ends.

/ Special cases:

1. If the 3 spans are equal, that is $l_1 = l_2 = l_3$, then:

$${}^{1}M_{1} = -\frac{4}{15l} \cdot 6^{\mathfrak{M}}\mathfrak{B}_{1} \tag{12}$$

$${}^{9}M_{1} = \frac{1}{15l} [6 {}^{90} \mathfrak{B}_{2} - 4 \cdot 6 {}^{90} \mathfrak{A}_{2}]$$
 (13)

$$^{8}M_{1} = \frac{1}{15l} \cdot 6 \mathfrak{M}_{3} \tag{14}$$

$${}^{1}M_{II} = \frac{1}{15l} \cdot 6 \, \mathfrak{M} \mathfrak{B}_{1}$$
 (15)

$${}^{2}M_{II} = -\frac{1}{15l} [4 \cdot 6 \, {}^{3}\mathcal{B}_{2} - 6 \, {}^{3}\mathcal{M}_{2}]$$
 (16)

$${}^{8}M_{II} = -\frac{4}{15 \, l} \cdot 6 \, \mathfrak{M}_{8} \tag{17}$$

2. If the spans are unequal and only uniformly distributed loads are applied $-p_1$ in span 1, p_2 in span 2, p_3 in span 3, then:

$${}^{1}M_{1} = -\frac{(l_{2} + l_{2})}{4(l_{1} + l_{2})(l_{2} + l_{2}) - l_{2}^{2}} \cdot \frac{p_{1}l_{2}^{3}}{2}$$
(18)

$${}^{2}M_{I} = -\frac{l_{2} + 2 l_{3}}{4 (l_{1} + l_{2}) (l_{3} + l_{3}) - l_{2}^{3}} \cdot \frac{p_{2} l_{2}^{3}}{4}$$

$$\tag{19}$$

$${}^{3}M_{I} = \frac{l_{3}}{4(l_{1} + l_{2})(l_{2} + l_{3}) - l_{2}^{2}} \cdot \frac{p_{3} l_{3}^{3}}{4}$$
 (20)

$${}^{1}M_{H} = \frac{l_{3}}{4(l_{1} + l_{9})(l_{9} + l_{8}) - l_{9}^{2}} \cdot \frac{p_{1}l_{1}^{3}}{4}$$
 (21)

$${}^{3}M_{II} = -\frac{2l_{1} + l_{2}}{4(l_{1} + l_{2})(l_{2} + l_{3}) - l_{2}^{2}} \cdot \frac{p_{2} l_{3}^{3}}{2}$$
 (22)

$${}^{8}M_{II} = -\frac{(l_{1} + l_{9})}{4(l_{1} + l_{9})(l_{2} + l_{8}) - l_{9}^{2}} \cdot \frac{p_{8} l_{8}^{3}}{2}$$
 (23)

Note: The denominator $4(l_1 + l_2)(l_3 + l_3) - l_3^2$ is the same for all moment values.

3. If in the case of uniform loading we have also $l_1 = l_2 = l_3$, then the above equations become:

$${}^{1}M_{I} = -\frac{1}{15} p_{1} l^{2}$$
 (24) ${}^{1}M_{II} = \frac{1}{60} p_{1} l^{2}$ (27)

$${}^{2}M_{I} = -\frac{1}{20} p_{2} l^{2} \qquad (25) \qquad {}^{2}M_{II} = -\frac{1}{20} p_{2} l^{2} \qquad (28)$$

$${}^{3}M_{I} = \frac{1}{60} p_{3} l^{2}$$
 (26) ${}^{3}M_{II} = -\frac{1}{15} p_{3} l^{3}$ (29)

and for uniform loading applied simultaneously in all three spans (dead load)

$$M_{\rm I} = M_{\rm II} = -\frac{1}{10} \, p \, l^2 \tag{30}$$

4. If $l_1 = l_8$ (equal end spans) and $l_2 = n l_1$, then we have:

$${}^{1}M_{1} = -\frac{p_{1}l_{1}^{2}}{2} \cdot \frac{(1+n)}{4(1+n)^{2}-n^{2}}$$
(31)

$${}^{2}M_{1} = -\frac{p_{2}l_{1}^{2}}{4} \cdot \frac{(2+n)n^{3}}{4(1+n)^{2}-n^{2}}$$
(32)

$${}^{3}M_{1} = \frac{p_{8} l_{1}^{2}}{4} \cdot \frac{n}{4(1+n)^{2} - n^{2}} \tag{33}$$

$${}^{1}M_{11} = \frac{p_{1} l_{1}^{2}}{4} \cdot \frac{n}{4(1+n)^{2} - n^{2}}$$
(34)

$${}^{2}M_{11} = -\frac{p_{2}l_{1}^{2}}{4} \cdot \frac{(2+n)n^{8}}{4(1+n)^{2}-n^{2}}$$
(35)

$${}^{3}M_{II} = -\frac{p_{3} l_{1}^{2}}{2} \cdot \frac{(1+n)}{4(1+n)^{2} - n^{2}}$$
 (36)

and for simultaneous uniform loading in all 3 spans (dead load)

$$M_{\rm I} = M_{\rm II} = -\frac{(2+n)(1+n^3)}{4(1+n)^2 - n^2} \cdot \frac{p \, l_1^2}{4} \tag{37}$$

C. Beam on 5 supports 4 spans l_1 , l_2 , l_3 and l_4

Denominator:
$$N = (l_3 + l_4) \left[4 (l_1 + l_2) (l_2 + l_3) - l_2^2 \right] - (l_1 + l_2) l_3^2$$
 (38)

$${}^{1}M_{1} = -\frac{1}{2(l_{1} + l_{9})} \cdot 6^{\mathfrak{M}} \mathfrak{B}_{1} \left[\frac{l_{2}{}^{2}(l_{3} + l_{4})}{N} + 1 \right]$$
(39)

$${}^{2}M_{I} = -\frac{l_{2}(l_{8} + l_{4})}{N} \left[6 \Re \vartheta_{9} - 6 \Re \vartheta_{2} \cdot \frac{l_{2}}{2(l_{1} + l_{2})} \right] - \frac{6 \Re \vartheta_{2}^{2}}{l_{2}} \cdot \frac{1}{2(l_{1} + l_{2})}$$
(40)

$${}^{8}M_{I} = -\frac{l_{2}(l_{8} + l_{4})}{N} \left[\frac{l_{8}}{2(l_{8} + l_{4})} \cdot 6 \, \mathfrak{MB}_{8} - 6 \, \mathfrak{Mg}_{8} \right] \tag{41}$$

$${}^{4}M_{1} = -\frac{l_{2} \, l_{3}}{2 \, N} \cdot 6 \, \mathfrak{M}_{4} \tag{42}$$

$${}^{1}M_{11} = \frac{l_{2} (l_{8} + l_{4})}{N} \cdot 6 \, {}^{\mathfrak{M}}\mathfrak{B}_{1} \tag{43}$$

$${}^{2}M_{\mathrm{II}} = -\frac{2(l_{1} + l_{2})(l_{3} + l_{4})}{N} \left[6 \Re \vartheta_{2} - 6 \Re \vartheta_{2} \cdot \frac{l_{3}}{2(l_{1} + l_{2})} \right]$$
(44)

$${}^{3}M_{II} = \frac{2(l_{1} + l_{2})(l_{8} + l_{4})}{N} \left[\frac{l_{8}}{2(l_{9} + l_{4})} \cdot 6 \Re \mathfrak{B}_{8} - 6 \Re \mathfrak{A}_{3} \right]$$
(45)

$$^{4}M_{\Pi} = \frac{l_{8}(l_{1} + l_{9})}{N} 6 \mathfrak{M}_{4} \tag{46}$$

$${}^{1}M_{111} = -\frac{l_{2}}{2} \frac{l_{3}}{N} \cdot 6 \Re \mathfrak{B}_{1} \tag{47}$$

$${}^{2}M_{\mathrm{III}} = \frac{l_{1}(l_{1} + l_{2})}{N} \left[6 \Re \mathfrak{B}_{2} - 6 \Re \mathfrak{A}_{2} \cdot \frac{l_{2}}{2(l_{1} + l_{2})} \right]$$
 (48)

$${}^{3}M_{III} = -\frac{l_{s}(l_{1} + l_{2})}{N} \left[\frac{l_{s}}{2(l_{3} + l_{4})} \cdot 6 \Re \mathfrak{B}_{s} - 6 \Re \mathfrak{A}_{s} \right] - \frac{1}{2(l_{s} + l_{4})} \cdot 6 \Re \mathfrak{B}_{s}$$
 (49)

$${}^{4}M_{\rm III} = -\frac{1}{2(l_{3} + l_{4})} \cdot 6 \Re \mathcal{H}_{4} \left[\frac{l_{3}{}^{2}(l_{1} + l_{2})}{N} + 1 \right]$$
 (50)

Special cases:

1. If the 4 spans are equal $(l_1 = l_2 = l_3 = l_4)$, then we have:

$${}^{1}M_{1} = -\frac{15}{56l} \cdot 6 \Re \mathfrak{B}_{1}$$
 (51)

$${}^{2}M_{1} = \frac{1}{56l} [4.6 \Re 9_{2} - 15.6 \Re q_{2}]$$
 (52)

$$^{8}M_{I} = \frac{1}{56l} [4 \cdot 6 \, ^{90}M_{8} - 6 \, ^{90}M_{8}]$$
 (52)

$$^{4}M_{I} = -\frac{1}{56l} \cdot 6 \, \mathfrak{M}_{4}$$
 (54)

$${}^{1}M_{II} = \frac{1}{14l} \cdot 6 \, {}^{99}\mathfrak{B}_{1} = -4.1 M_{III}$$
 (55)

$${}^{*}M_{II} = \frac{1}{14l} \left[6 \Re \mathfrak{A}_{2} - 4 \cdot 6 \Re \mathfrak{B}_{3} \right] = -4 \cdot {}^{2}M_{III}$$
 (56)

$$^{8}M_{\Pi} = \frac{1}{14\iota} [6^{98} \mathfrak{B}_{8} - 4 \cdot 6^{98} \mathfrak{A}_{8}] = -\frac{4}{15} {}^{8}M_{1}$$
 (57)

$$^{4}M_{II} = \frac{1}{14l} \cdot 6 \,^{\mathfrak{M}}\mathfrak{A}_{4} = -\frac{4}{15} \cdot {^{4}}M_{I}$$
 (58)

$${}^{1}M_{111} = -\frac{1}{56l} \cdot 6 \, {}^{90}9_{1}$$
 (59)

$${}^{2}M_{\rm III} = \frac{1}{56l} \left[4.6 \, {}^{\rm M}\mathfrak{B}_{2} - 6 \, {}^{\rm M}\mathfrak{A}_{2} \right] \tag{60}$$

$$^{8}M_{\rm m} = \frac{1}{56l} [4.6 \, {}^{\rm m}{\rm M}_{\rm s} - 15.6 \, {}^{\rm m}{\rm B}_{\rm s}]$$
 (61)

$$^4M_{\rm III} = -\frac{15}{56l} \cdot 6 \, {\rm Mag}_4 \tag{62}$$

2. If $l_1 = l_4$ (equal end spans) and $l_2 = l_8 = n l_1$ (equal interior spans), then:

$${}^{1}M_{1} = -\frac{1}{2(n+1)l_{1}} \cdot 6 \Re \mathfrak{B}_{1} \left[\frac{n^{2}}{8n+6n^{2}} + 1 \right]$$
 (63)

$${}^{2}M_{I} = \frac{n}{l_{1}(8n+6n^{2})} \left[6 \Re \Re_{2} - 6 \Re \Re_{2} \cdot \frac{n}{(n+1)} \right] - 6 \Re \Re_{2} \frac{1}{2(n+1)}$$
 (64)

$${}^{3}M_{1} = -\frac{n}{l_{1}(8n+6n^{2})} \left[\frac{n}{2(1+n)} \cdot 6 \, \mathfrak{MB}_{3} - 6 \, \mathfrak{MU}_{3} \right] \tag{65}$$

$${}^{4}M_{1} = -\frac{n}{l_{1}(12n^{2} + 28n + 16)} \cdot 6 \mathfrak{M} \mathfrak{A}_{4}$$
(66)

$${}^{1}M_{\Pi} = \frac{n}{l_{1}(8n+6n^{2})} \cdot 6^{\mathfrak{M}}\mathfrak{B}_{1} \tag{67}$$

$${}^{2}M_{II} = -\frac{2(n+1)}{l_{1}(8n+6n^{2})} \left[6 \Re \vartheta_{2} - 6 \Re \vartheta_{2} \cdot \frac{n}{2(1+n)} \right]$$
 (68)

$${}^{3}M_{11} = \frac{2(n+1)}{l_{1}(8n+6n^{2})} \left[\frac{n}{2(1+n)} \cdot 6 \, \mathfrak{MB}_{3} - 6 \, \mathfrak{MU}_{2} \right] \tag{69}$$

$${}^{4}M_{\rm H} = \frac{n}{l_1(8n + 6n^2)} \cdot 6 \, {}^{\mathfrak{M}}\mathfrak{A} \tag{70}$$

$${}^{1}M_{\text{III}} = -\frac{n}{{}_{1}(12\,n^{2} + 28\,n + 16)} \cdot 6\,\mathfrak{M}\mathfrak{B}_{1} \tag{71}$$

$${}^{2}M_{\mathrm{III}} = \frac{n}{l_{1}(8n+6n^{2})} \left[6^{\mathfrak{M}} \mathfrak{B}_{2} - 6^{\mathfrak{M}} \mathfrak{A}_{2} \cdot \frac{n}{2(1+n)} \right]$$
 (72)

$${}^{3}M_{III} = -\frac{n}{l_{1}(8n+6n^{2})} \left[\frac{n}{2(1+n)} \cdot 6 \Re \mathfrak{B}_{8} - 6 \Re \mathfrak{A}_{8} \right] - \frac{1}{2(1+n)l_{1}} \cdot 6 \Re \mathfrak{A}_{8}$$
 (73)

$${}^{4}M_{\text{III}} = -\frac{1}{2(n+1)l_{1}} \cdot 6 \, \mathfrak{M}_{4} \left[\frac{n^{2}}{8n+6n^{2}} + 1 \right] \tag{74}$$

3. If only uniformly distributed loads are applied, then in the case of unequal spans:

Denominator N (see equation 38, p. 11)

$${}^{1}M_{1} = -\frac{p_{1}l_{1}^{3}}{8(l_{1} + l_{2})} \left[\frac{l_{2}^{2}(l_{3} + l_{4})}{N} + 1 \right]$$
 (75)

$${}^{2}M_{1} = \frac{p_{2} l_{3}^{3}}{4} \left[\frac{l_{2} (l_{3} + l_{4})}{N} \left(1 - \frac{l_{2}}{2 (l_{1} + l_{2})} \right) - \frac{1}{2 (l_{1} + l_{2})} \right]$$
 (76)

$${}^{3}M_{1} = -\frac{p_{3}l_{3}^{3}}{4} \left(\frac{l_{8}}{2(l_{3}+l_{4})} - 1\right) \frac{l_{2}(l_{8}+l_{4})}{N}$$
 (77)

$${}^{4}M_{\rm I} = -\frac{p_4 l_4^8}{8} \cdot \frac{l_2 l_8}{N} \tag{78}$$

$${}^{1}M_{11} = \frac{p_{1} l_{1}^{3}}{4} \cdot \frac{l_{2} (l_{8} + l_{4})}{N} \tag{79}$$

$${}^{2}M_{\Pi} = -\frac{p_{2} l_{2}^{3}}{4} \left(1 - \frac{l_{2}}{2 (l_{1} + l_{2})}\right) \frac{2 (l_{1} + l_{2}) (l_{3} + l_{4})}{N}$$
(80)

$${}^{8}M_{\Pi} = \frac{p_{8} l_{8}^{3}}{4} \left(\frac{l_{3}}{2 (l_{8} + l_{4})} - 1 \right) \frac{2 (l_{1} + l_{2}) (l_{8} + l_{4})}{N}$$
(81)

$${}^{4}M_{\Pi} = \frac{p_{4} l_{4}^{3}}{4} \cdot \frac{l_{8} (l_{1} + l_{2})}{N} \tag{82}$$