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INTRODUCTION TO THE SERIES

The rapid expansion and diversification of contemporary music is
explored in this international series of books for contemporary musicians.
Leading experts and practitioners present composition today in all
aspects — its techniques, aesthetics and technology, and its relationships
with other disciplines and currents of thought - as well as using the series
to communicate actual musical materials.

The series also features monographs on significant twentieth-
century composers not extensively documented in the existing literature.

Nigel Osborne



PREFACE

Music and Artificial Intelligence has recently been established as an
important discipline in many music-related curricula throughout the
world. There have been one or two advanced books and conference
proceedings available, but there has never been a publication which
introduces the fundamentals of the discipline to beginners and points
students and researchers to other references. Readings in Music and
Artificial Intelligence is an attempt to bridge this gap. The editor
commissioned a number of top Music and Al researchers to write an
original chapter introducing their field of expertise. The reader should
therefore regard this book as a collection of key introductory texts from a
variety of standpoints, at times contradictory.

The book begins with a brief introduction to Music and Al, followed
by a discussion regarding the computer as an intelligent aid for
composition. The chapter introduces the concept of musical grammars
and touches on one of the most fundamental dilemmas in Al: knowledge
representation. In chapter two Alan Marsden drives a coach and horses
through crucial philosophical issues that have always been taken for
granted in AI research. Marsden questions whether we should not
definitively acknowledge that human intelligence is incompatible with
computers. Al systems, suggests Marsden, would be better off if they
were designed to explore the intrinsic capabilities of the computer itself
(e.g. processing speed and massive manipulation of data) rather than be
designed to emulate the human mind.

The third chapter is by Geraint Wiggins and Alan Smaill. Here the
authors present a thorough introduction to the benefits of Al for music
research and extend the notion of knowledge representation introduced
in the first chapter. Wiggins and Smaill focus on an interesting
representation technique of their own called Charm. Then, Petri
Toiviainen introduces the reader to a completely different concept:
connectionism (or neural networks). Connectionism is regarded by many
as a rival of (traditional) Al but each approach has its own merits and
pitfalls. Toiviainen presents a general survey of the relationship between
these two fields of research and illustrates the benefits of neural networks
for music. Although neural networks are highly prized for their ability to
learn, Gerard Widmer follows with a discussion of traditional (or
symbolic) Al methods for machine learning and puts his assumptions in
black and white by means of an example application.
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The next two chapters are dedicated to the benefits of Al in systems
for music analysis. Francois Pachet introduces the basics of computer-
aided music analysis and describes his own spectacular system for the
analysis of jazz chord sequences. A chapter by Pierre-Yves Rolland and
Jean-Gabriel Ganascia follows with an in-depth discussion on the role of
pattern extraction techniques in computer tools for music analysis and
composition. :

Al techniques have also found wide popularity in interactive
systems for music composition and performance. Interactive music
systems change their behaviour in response to the actions of a performer.
Robert Rowe introduces Cypher, a system that has the ability to “listen”
and react during a musical performance, as if the computer was a fellow
musician in a jam session. The following chapter by Antonio Camurri
complements this by presenting the notion of multimodal environments
for integrating interactive music systems with visual media and multiple
actuators (e.g. dancers and actors). Then Roger Dannenberg proposes
Dynamic Programming as a programming strategy for the
implementation of interactive music systems.

The last three chapters are dedicated to music education. Music
educators see great potential in using Al for building intelligent teaching
systems. To begin with, Carlos Gustavo Guerra introduces some
fundamental issues in musical education from a holistic approach and
criticises the undiscerning use of computers in current educational trends.
Next, Brian Smith discusses a number of issues that are central to the
design of music tutoring systems, giving various examples to illustrate
his points of view. Finally, an extensive survey of current approaches to
using Al in music education is given by Simon Holland. A number of
existing Al systems for music education are invoked to illustrate the key
issues, techniques and methods associated with these approaches.

I would like to thank all the contributing authors for their support,
enthusiasm and expertise. I hope that this book will stimulate researchers
and musicians to explore this new and exciting field of investigation.

Eduardo Reck Miranda

1

REGARDING MUSIC, MACHINES,
INTELLIGENCE AND THE BRAIN: AN
INTRODUCTION TO MUSIC AND Al

Eduardo Reck Miranda

The Musical Brain

From a number of plausible definitions for music, the one that frequently
stands out in musicological research is the notion that music is an
intellectual activity; that is, the ability to recognize patterns and imagine
them modified by actions. We understand that this ability is the essence
of the human mind: it requires sophisticated memory mechanisms,
involving both conscious manipulations of concepts and subconscious
access to millions of networked neurological bonds. In this case, it is
assumed that emotional reactions to music arise from some sort of
intellectual activity.

Different parts of our brain do different things in response to the
stimuli we hear. Moreover, music is not detected by our ears alone; for
example, music is also “heard” through the skin of our entire body (Storn, -
1993). The brain’s response to external stimuli, including sound, can be
measured by the activity of the neurons. Two measuring methods are
commonly used: PET (Positron Emission Tomography) and ERP (Event
Related Potential). PET measures the brain’s activity by scanning the flow
of radioactive material previously injected into the subject’s bloodstream.
Despite its efficiency, this method is rather controversial because the long
term side effects of the radioactive substances to the health of the subject
are not entirely known. ERP uses tiny electrodes placed in contact with
the skull of a person to measure the electrical activity of the brain. As far
as the health of the subject is concerned, ERP is safer than PET, but the
measurement is different. Whilst PET scans give a clear cross-sectional
indication of the area of the brain where the bloodflow is more intense
during the hearing process, ERP gives only a voltage level vs. time graph
of the electrical activity of the areas of the brain where the electrodes have
been placed.

Our understanding of the behaviour of the brain when we engage
in any type of musical activity (e.g., playing an instrument or simply
imagining a melody) is merely the tip of an iceberg. Both measuring
methods have brought to light important issues that have helped
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researchers uncover the tip of this iceberg. PET scans have shown that
listening to music and imagining listening to music activate different
parts of the brain and ERP graphs have been particularly useful to
demonstrate that the brain expects sequences of stimuli that conform to
established circumstances. For instance, if you hear the sentence “A
musician composes the music”, the electrical activity of your brain will
tend to run fairly steadily. But if you hear the sentence “A musician
composes the dog”, the activity of your brain will display significant
negative electrical response immediately after the word “dog”.

The human brain seems to respond similarly to musical
incongruities. Such behaviour obviously depends upon one’s under-
standing of the overall meaning of the language in hand. A number of
enthusiasts believe that we are born “programmed” to be musical, in the
sense that almost no-one has difficulties in finding coherence in simple
tonal melodies (Robertson, 1996).

Understanding Intelligence with A

The understanding of the behaviour of the human brain is not, however,
identical to the understanding of intelligence. Physical measurements of
brain activity may certainly endorse specific theories of intelligence, but
not all theories seek endorsement of this sort.

One of the goals of Al is to gain a better understanding of
intelligence, but not necessarily by studying the inner functioning of the
brain. The methodology of Al research is largely based upon logics,
mathematical models and computer simulations of intelligent behaviour
(Luger and Stubblefield, 1989).

Of the many disciplines engaged in gaining a better under-
standing of intelligence, Al is one of the few that has special interest in
testing its hypotheses in practical day-to-day situations. The obvious
practical benefit of this aspect of Al is the development of technology to
make machines more intelligent; for example, thanks to AI computers can
play chess and diagnose certain types of diseases extremely well.

It is generally stated that Al as such was “born” in the late 1940’s,
when mathematicians began to investigate whether it would be possible
to solve complex logical problems by automatically pétforming
sequences of simple logical operations. In fact Al may be traced back far
before computers were available, when mechanical devices began to
perform tasks previously performed only by the human mind, including
some musical tasks (Levenson, 1994).

Is intelligence synonymous to the ability to perform logical
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operations automatically, to play chess or to diagnose diseases? Answers
to such types of questions tend to be either or ambiguous biased to
particular viewpoints. The problem is that once a machine is capable of
performing such types of activities, we tend to cease to consider these
activities as intelligent. Intelligence will always be that unknown aspect of
the human mind that has not yet been understood or simulated.

Towards Intelligent Music Machines

Music is without doubt one of the most intriguing activities of human
intelligence. By studying models of this activity, researchers attempt to
decipher the inner mysteries of both music and intelligence. From a
pragmatic point of view, however, the ultimate goal of Music and Al
research is to make computers behave like skilled musicians. Skilled
musicians should be able to perform highly specialized tasks such as
composition, analysis, improvisation, playing instruments, etc., but also
less specialized ones such as reading a concert review in the newspaper
and talking to fellow musicians. In this case the music machine would
need to have some basic understanding of human social issues, such as
sorrow and joy. Will computers ever display such highly sophisticated
and integrated behaviour? More optimistic enthusiasts believe so
(Minsky, 1985).

As happens in other areas of Al research, however, computers
have so far been programmed to simulate most specialized tasks, but
fairly independently from each other. Current research work is now
looking for ways to integrate the ability to perform a variety of such tasks;
e.g., mechanisms from systems for music analysis are aggregated to
systems for composition in order to allow for the computer to
autonomously compose music in the style of analysed pieces.

It is debatable whether musicians want to believe in the
possibility of an almighty musical machine. Musicians will keep pushing
the definition of musicality away from automatism for the same reasons
that scientists keep redefining intelligence. Nevertheless, Al is helping
musicians to better operate the technology available for music making
and to formulate new theories of music (Balaban et 4l., 1992).

Formal Grammars

The notion of formal grammars is one of the most popular, but also
controversial, notions that has sprung from Al research to fertilize the
grounds of these flourishing new theories of music (Cope, 1991). Formal
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grammars appeared in the late 1950s when linguist Noam Chomsky
published his revolutionary book Syntactic Structures (Chomsky, 1957). In
general, Chomsky suggested that people are able to speak and understand
a language mostly because they have mastered its grammar. According to
Chomsky, the specification of a grammar must be based upon
mathematical formalism in order to thoroughly describe its functioning;
e.g, formal rules for description, generation and transformation of

sentences. A grammar should then manage to characterise sentences -

objectively and without guesswork. Chomsky also believed that it should
be possible to define a universal grammar, applicable to all languages.

The study of the relationship between spoken language and
music is as old as the music of the Western culture. It is therefore not by
accident that Music and Al research has been strongly influenced by
linguistics and particularly by formal grammars. Many musicologists
believe that Chomsky’s assumptions can be similarly applied to music
(Lerdhal and Jackendoff, 1983; Cope, 1987; Holtzman, 1994). A substantial
amount of work inspired by the general principles of structural
description of sentences has been produced, including a variety of useful
formal approaches to musical analysis; e.g., Schenkerian-like techniques
(Cook, 1987; Smoliar, 1979).

A Brief Introduction to Formal Grammars
Figure 1 below illustrates an example of a grammatical rule for a simple
affirmative sentence: “A musician composes the music”.

S
\
NS Vs

/ N\ RN
A N v NS
’ / \

A N
A musician composes l'hn ml!lsic

Figure 1 Example of a grammatical rule.

The rule in Figure 1 is saying that:

(@ S =NS + VS (a sentence S if formed by a noun-sentence NS and a
verb-sentence VS)

(b) NS =A+N (a noun-sentence NS is formed by an article A and a noun
N)

(@ V5=V + NS (a verb-sentence VS is formed by a verb V and a noun-
sentence NS)
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Such a rule can be programmed into a computer in order to generate
sentences automatically. In this case, the computer must also be furnished
with some sort of lexicon of words to choose from. For example:

A = {the, a, an}
N = {dog, computer, music, musician, coffee}
V = {composes, makes, hears}

Note that the lexicon defines the three classes of words required by the
rule: articles (A), nouns (N) and verbs (V). Given the above rule and
lexicon, the computer can be activated to generate meaningful sentences,
such as “A computer composes the music” or “A dog hears the musician”,
but also nonsense ones, such as “A musician composes the dog” and “A
coffee hears the computer”. The production of nonsense could be
alleviated by defining tighter rules, but a notion of semantics would also
be necessary for better results.

The rule above is called generative because it is used to generated
sentences from scratch. Transformational rules work similarly to the
generative ones. In this case, the computer is usually programmed to
verify if the sentence to be transformed is syntactically correct. This
verification is often done by simply matching the generative rule that
would have generated the sentence. For example, a transformational rule
to change the order of simple sentences could be defined as follows:

IF:

S(O) = NS(n) + VS(m) and
NS¢ = Ag) + N and
VS(m) = V + NS(m)

THEN:

Siy = NS + Vs(n) and
NS = A + N and
VS(n) = NS(n) +V

In plain English, the rule above reads as follows: If the sentence to be
transformed is composed of a first noun-sentence followed by a verb-sentence, and
the first noun-sentence is formed by an article and a name, and the verb-sentence
is formed by a verb and a second noun-sentence of the same format of the first
noun-sentence, then the transformed sentence will be formed by the second noun-
sentence followed by a new verb-sentence composed of the first noun-sentence
followed by the verb.
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Applying this transformation rule to the sentence “A musician
composes the music” will give the result “The music a musician
composes”. Punctuation could also be included in the rule in order to
produce “The music, a musician composes.”

Generative and transformational rules to generate and transform
musical “sentences” can be similarly defined.

An Example of a Music Formal Grammar

In order to define a grammar for music one should carefully consider
what the constituents of the rules will be; e.g., notes, phrases, melodies,
chords, etc. For the purposes of the example below, we defined the
constituents of our grammar in terms of 5 fundamental notions:

(a) the notion R, of a reference note (e.g, R =C4)

(b) the notion of interval I, between two notes (e.g., I, = perfect 5th)
(c) the notion of direction D, of the interval (e.g., D; = upwards)

(d) the notion of sequence SEQ,

(e) the notion of simultaneity SIM,

An example of a generation rule from our grammar is defined as follows
(Figure 2):

(a) SIM, = SEQ, + SEQ,
(b) SEQ, =[I5,D1] + [Ig, D] + [T, D1]
() SEQ,=I[L;,D,] + {Is, Dl

[Is, Dy] [1s, Dy] [I;, Dy] [Is, D2] [I5, D3]

Figure 2 An example of a music grammar.

The lexicon for our grammar includes the following: ”

[ = {minor 2nd, major 2nd, minor 3rd, major 3rd, perfect 4th, augmented
4th, perfect 5th, minor 6th, major 6th, minor 7th, major 7th, octave,
none} :

D= {upwards, downwards, none)
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The pair [I5,D,], for example, indicates that the interval is a perfect 4th (the
fifth element of the set I) and the direction of the interval is upwards (the
first element of the set D). Thus, the rule above reads as follows: A certain
musical passage is composed of two sequences played simultaneously. One
sequence is formed by 3 notes and the other is formed by 2 notes. The notes of the
former sequence are calculated from a given reference note in this order: a perfect
4th upwards, a minor 6th upwards and a major 7th upwards. The notes of the
latter sequence are calculated, using the same reference note, in this order: a
perfect 4th downwards and a minor 6th downwards. By establishing that the
reference point R = C4, the musical passage shown in Figure 3 can be
generated:

—
—F

gyl d
= : —
Figure 3 Musical passage generated by the grammar.

Note that rhythm has not been included in our grammar, in order to keep
our examples as simple as possible.

A transformational rule for the above type of passage could, for
example, create a new sequence SEQ; by joining the two sequences into a
single simultaneous event (SIM, = SEQ; + SEQ,), followed by the original
first sequence SEQ, (Figure 4):

IF:

SIM, = SEQ,+SEQ, and

SEQ, = [I5,Di] + [Ig,D1] + [Iy1,D;] and
SEQ, = [I5,D,] + [I5, Dal

THEN:

SEQ; = SIM, + SEQ, and
SIM, = SEQ, + SEQ,

? HT
L == SS
J

Figure 4 An example of a musical transformation

\

The computer could be programmed to produce an entire musical
composition by successive activation of a variety of generative and
transformational rules (Figure 5):
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Figure 5 Musical material produced by successive activation of rules.

The music produced by computer programs of this kind is usually
labelled as algorithmic composition. Algorithmic composition, however,
does not necessarily mean composition produced by grammars, but all
music produced automatically by any kind of computer program. Most
composers working with computers nowadays tend to be cautious with
such labelling.

Who Composed Entre I’Absurde et le Mystére?

Entre I’ Absurde et le Mystére is a piece for chamber orchestra produced by
CAMUS, a computer system designed by the author (Miranda, 1993;
1994). CAMUS uses cellular automata-based simulations of biological
behaviour to produce sequences of music structures (e.g., melodies,
chords, clusters, etc.)

The public warmly applauded its performance by The Chamber
Group of Scotland in 1995 in Edinburgh. Martyn Brabbins, the conductor,
was reluctant to believe that a computer had generated the piece and
generally members of the audience found the piece to be pleasant. The
general wonder of that evening was: “Was the piece really composed by
a computer?”

This question is debatable and has serious ideological
implications. To our point of view, a distinction between author and meta-
author should be made in such cases. The ultimate authorship of the
composition here should be to the person who designed and/or operated
the system. Even in the case of a program that has the ability to program
itself, someone is ultimately behind the design and/or the operation of
the system. Similarly, one would hardly consider that Pierre Boulez’s
Polyphonie X (Nattiez, 1993), for example, was composed by the serialism
system.

Semantics

Formal grammars are suitable for the description of the syntactical rules of a
language but they do not guarantee meaningful formations. If one wishes to
program a computer to produce meaningful sentences automatically,
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some notion of semantics must be included in the system. Although
semantics is a concept primarily related to spoken languages, it also
applies to music to a certain extent.

Semantics, often referred in Al jargon as declarative knowledge, is a
crucial aspect of Al research. A substantial amount of research work is
dedicated to the design of methods to represent knowledge effectively
(Brachman and Levesque, 1985).

Knowledge Representation

Designers of Al systems require knowledge representation techniques that
provide representational power and modularity. They must capture the
knowledge needed for the system and provide a framework to assist the
systems designer to easily organize this knowledge (Bench-Capon, 1990;
Luger and Stubblefield, 1989). )

The Internal Representation Hypothesis

The primary assumption in Al is that mental activity is mediated by
internal representations. Although there is no consensus as to what these
representations actually are (some regard them as neurophysiological
states, whilst others may define them as symbols or even images), the
traditional approach to Al assumes that intelligent activity is achieved
through:

(a) the use of symbols to represent a problem domain
(b) the use of these symbols to generate potential solutions to problems
(c) the selection of a suitable solution to a problem.

The use of an adequate knowledge representation technique is therefore
one of the most important keys for the design of successful Al systems.

A brief survey of knowledge representation paradigms

Logic representation: first-order predicate calculus
A number of logics have been developed in philosophy and mathematics
to represent knowledge; for example propositional calculus and first-order
predicate calculus. The first-order predicate calculus is largely used in Al
systems.

The first-order predicate calculus provides a well-defined
language for describing and reasoning about qualitative aspects of a
system. It can denote objects of a domain by using simple symbols and
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can express relationships between objects, assertions and denials of these
relations, and logical relations between these statements (Luger and
Stubblefield, 1989).

The first-order predicate calculus is sufficiently general to
provide a foundation for other models of knowledge representation. Al
problem domains however often require large amounts of highly
structured interrelated knowledge. Some high-level notion of structure is
needed to help the systems designer represent complex concepts in a
coherent way. The first-order predicate calculus alone does not provide
this help.

Network representation: graphs

A network representation also provides the means to denote objects of a
domain and relations between them by using simple symbols. The
advantage of network representations over logic representations is that
the former can provide some high-level notion of structure that helps
the systems designer to represent taxonomically structured information.
The philosophy behind a network representation is that one reasons
about a concept or object by relating it to other concepts or objects of the
domain.

Figure 6 An example of a simple semantic network.

Graphs technique is an example of network representation; it provides a
means to explicitly represent objects and relations by using nodes and
arcs. A number of graphs techniques have been developed and used in Al
systems; for example, conceptual graphs and semantic networks.

A semantic network, for instance, consists of a network of nodes
linked by arcs, so that nodes represent concepts, or object, and arcs represent
relations between them; both nodes and arcs are usually labelled (Figure 6).

In Figure 6, there are 4 objects (“musical instrument”, “orchestra”,
“woodwind” and “flute”) and 2 types of relations (“PART OF” and “IS
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A"). This semantic network represents the following facts:

A musical instrument is part of the orchestra.
A woodwind is a musical instrument.
A flute is a woodwind.

Other facts can be inferred from the network, in addition to the facts
which are explicitly represented. For example:

A flute is part of the orchestra.

One of the advantages of a graphs-based representation is that facts come
from the definition. of links and associated inference rules that define
specific mechanisms, such as the inheritance mechanism. In the case of the
above example, “flute” inherited the fact that it is part of “orchestra”.

In itself a graphs-based notation of relationships is not so
different from the first-order predicate calculus. The power of a network
representation is that it provides an explicit method to represent objects
and relations, and promotes the organization of knowledge into class
hierarchies and the inheritance mechanism.

Structured representation: Frames

Network representations allow for the representation of knowledge using
explicit links between single objects in a knowledge base. Structured
representations however extend network representations by providing a
means to organize large networks of knowledge into a collection of
separate networks, each of which represents some stereotyped situation
or class of objects.

Frames technique is a type of structured representation. Frames
technique allows for the representation of complex structures by
encapsulating multiple attributes of situations, or objects, into single units,
or classes of objects, in the domain.

A frame is a data structure whose components are called slots.
Slots have names and accommodate various types of information: a value,
a link to other frames or procedures to calculate its value. A slot may also
be left incomplete.

As in semantic networks, the most useful feature of frames is the
inheritance mechanism; when a frame represents a class of objects and
another frame represents a superclass of this class, then the class frame
inherits from the superclass the values for its incomplete slots. Examples

Vof frames:
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FRAME: musical instrument

art_of: orchestra
: woodwind

is_a: musical instrument
excitation_method: air stream
resonance_method: pipe

Note that slots are similar to the arcs of a network representation. Slots
however have the advantage that they can hold procedures to perform
some function, in addition to links to other concepts.

Structured representations thus extend network representations
by representing complex objects as interconnected structured single
entities, rather than as one single large network.

Conclusion

Mathematics and logics undoubtedly play a dominant role in the
formalisation of intelligence for Al research. But is formalization the right
approach to express intelligent behaviour? Is it right to distinguish
between mind and body, semantics and syntactics, knowledge and
abstract representation schemes?

The great majority of Al work to date has assumed that
intelligence can be simulated by encapsulating chunks of data into static
“packets” of information. Intelligent activity is then performed by an
“engine” that picks and combines appropriate packets of information
stored in memory in order to achieve specific goals. In this case,
knowledge is often classified into two main groups: declarative (e.g., the
semantics of the grammar or the “meaning” of the packets of information)
and procedural (e.g., the grammar itself or the “how” the engine should
function).

In fact humans store knowledge in a more complex way. Our
brains are stubborn systems which cannot be deconstructed so neatly.
Human intelligence is formed by both conscious and unconscious elements
distributed at different levels of layers in our mind.

Only the conscious ones can be objectively accessed and
manipulated. We seem not to have access to the levels which da most of
our thinking. When we think, we certainly change our own rules and
rules that changes the rules, and so on, but we cannot change the lower
layers; i.e, neurons always function in the same way.

Modern approaches to Al seek inspiration from this
neurophysiological model. Traditional AI research methods are not
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necessarily inspired by neurophysiology but have, nevertheless,
produced fruitful results. Perhaps the most fruitful of them all is the
conclusion that there are many types of intelligence and each have their
own characteristics. Music certainly involves a very distinct type of
intelligence and it is up to Music and Al researchers to find the right
approaches to it.
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2
MUSIC, INTELLIGENCE AND ARTIFICIALITY

Alan Marsden

Introduction

Computers are machines. Intelligence is a human characteristic, and
though it is often taken to be the characteristic which distinguishes us
from animals, computers rarely approach the intelligence even of animals.
One of the characteristics of machines is that they are man-made, and in
that sense artificial (the sense of artificial as “unreal” will be discussed
briefly below). The characteristic which distinguishes them from other
artificial things is behaviour, and this characteristic is one which they share
with humans and animals. In fact everything has behaviour, in that
everything responds in a particular way in interaction with an
environment: if one drops a ball it bounces; if one drops a glass it smashes.
The real distinction between machines and other artificial objects cannot
be made without reference to human values and intentions: we value
machines because of their behaviour and not because of other
characteristics (e.g. their shape, dimensions and solidity, as in the case of
chairs). We use machines to extend our own behaviour. A class of
machines which has become particularly important during this century is
machines whose behaviour concerns information. This class contains
such ancient machines as the printing press and such common ones as the
telephone - it is a mistake to regard information technology, at least in this
sense, as something new.

The characteristic which computers have which is genuinely new,
and which sets them apart from other information-processing machines,
is that their behaviour is not only controllable by the user (this is an
important characteristic of all useful machines) but that their behaviour is
definable by the user. Other machines can have this characteristic, both
information-processing machines and others, but only within tight
constraints. In the case of a computer, on the contrary, its behaviour is
highly unconstrained, at least in the domain of the processing of
information (the possibilities for physical behaviour are usually very
limited). In fact, the ideal computer is a universal processing machine which
is capable of performing any kind of behaviour in the domain of abstract
information processing. At the level of programming, the “input” which
a computer reads is a definition of a kind of behaviour, or in other words,
a definition of an abstract machine. If computers are thus intended to be
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able to mimic any kind of behaviour, it is not surprising that there should
be interest in programming computers to behave in ways that are human-
like and which could be called intelligent. There has also been interest in
having computers perform musical tasks, whether it be playing music,
processing music, or creating music. Whether behaving in a musical
manner implies behaving in a human manner is discussed below. For
now, it is sufficient to note that the combination of the two — the intention
to behave in a human-like fashion and to perform a musical task - is the
topic of this chapter.

History

An argument is presented below that no attempt to have a computer
perform a musical task can be totally unconcerned with the issues of
Artificial Intelligence, but customarily Music-Al has included only those
musical computer systems which have involved a degree of complexity
which is not the complexity of mathematical formulae, nor the complexity
of large quantities of data, but rather a kind of complexity of ideas. As in
other domains, certain tasks have been considered to involve intelligence
while others have not. (This is a problematic issue, which will be returned
to below.) Sound synthesis, for example, is an area which has attracted a
great deal of very successful work, but little of it is regarded as being in
the domain of Music-Al because it has concerned acoustic and psycho-
acoustic phenomena and the mathematics of signal processing rather than
being concerned with thinking. Similarly, the vast area of systems for
capturing, processing and using performance data via sequencers and the
like is excluded from the domain of Music-Al, as are systems for music
notation. A brief historical survey is presented here, organised around
different architectures of systems.

Early attempts at programming computers to perform musical
tasks took an algorithmic approach. The objective was to describe the
procedures which must be performed in order to produce a musical
result. An example of high-quality work of this kind can be found in the
research of Longuet-Higgins and his co-workers (Longuet-Higgins, 1978;
Longuet-Higgins and Steedman, 1971). The objective of this work was a
system which could transcribe music played on a keyboard (the work
began in the days before MIDI) to music notation. This involves resolving
issues about the representation of pitch (should a note be written as C
sharp or D flat, for example), which involves determining key, and issues
about the representation of rhythm, which involves'both determining
metre and coping with the variations from metronomic playing of a real
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performance (which can be quite severe). Algorithms with a moderate to
high degree of success for these tasks were designed and implemented in
the language Pop-11. Projects which have also taken an algorithmic
approach have been directed at tasks as diverse as composition (Ames
and Domino, 1992; Cope, 1991) and transcription of lute tablatures
(Charnassé and Stepien, 1992). While this approach can produce good
results, if those resuits are to be applicable in other programs to perform
other tasks, then it is up to the researcher to make certain that the
algorithms are suitably designed and explained. Some authors, (Longuet-
Higgins among them) are excellent at explaining what their algorithm
does; others are not so. The algorithms themselves, without explanation,

-cannot be expected to be transferable to a program to perform another

task, however similar. At issue here is really the nature of the principal
objective of research in Music-AL Is it to design and implement computer
systems which perform musical tasks (an engineering objective), or is it to
discover and explain the knowledge which underlies these tasks (a
cognitive-science objective)? Most researchers would claim the latter, but
this can only be tested by achieving the first objective to some degree also.

While every computer program ultimately comes down to
algorithms, there has been considerable interest in devolving the
translation from knowledge to algorithm to the computer so that the
representation in which a system is expressed can be more directly a
representation of the knowledge underlying a particular task. A number
of formalisms intended to achieve this have been designed. The one
which has most often been used in music, usually because of a perceived
similarity with language, has been formal grammars. Another early
example of Music-Al is the harmonic analysis system of Winograd (1968).
The core of this was a systemic grammar which described tl}e
configurations of chords, harmonies and tonalities possible in
homophonic tonal music such as the chorale harmonisations of ].5. Bach.
This gave an extremely clear exposition of the “knowledge” of tonz.il
theory. The grammar could be applied in the analysis of a piece of music
to discover how the grammar accounts for the piece, and thereby, by
reporting the steps of the derivation, producing a harmonic analysis of. the
piece. However, many different analyses were possible for any one piece
(musicians will be familiar with the idea of different possible analyses, but
they might be surprised at quite how many were allowed by Winograd’s
grammar, which was quite a faithful reproduction of classical tonal
theory.) The part of the system which derived analyses, therefore, called
the “parser”, had to be quite complex and make use of other, procedural
knowledge in order to arrive at harmonisations which were acceptabl.e. In
principle a grammar should be applicable in either direction, i.e. to either
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analyse music or produce music. It might be possible to use Winograd’s
grammar to produce harmonisations, but Winograd did not attempt this.
A well-known grammar which did produce music was that of Baroni e al.
(1992), who produced a number of grammars to generate chorale
melodies, eighteenth-century French chansons, and the text repetition
patterns of Legrenzi arias. In both Baroni et al. and Winograd’s work, the
business of translating the grammar to an algorithm was not devolved to
the computer, as suggested above, but coded by hand. In the case of
Kippen and Bel's Bol Processor (1989; 1992), however, the computer system
operated directly on the grammars. The Bol Processor was a system
intended to assist in the understanding of a style of tabla drumming found
in North India. It was capable both of producing new pieces of music, and
of analysing existing pieces. Their publications also include excellent
discussions of the principles of using grammars in this kind of work and
of some of the issues involved.

Another formal systems for representing knowledge applied in
Music-Al is KL-ONE, a well-developed system of knowledge
representation, derived from frames and semantic networks, which
expresses knowledge in terms of concepts and roles, and defines
inheritance and other relations between them. Here again, the intention is
to allow a clear expression of knowledge which is susceptible to direct
implementation by computer. Furthermore, this knowledge is, in
principle at least, expressed abstractly without any reference to its
application in any particular task. KL-ONE is used to provide the
symbolic layer of HARP, a hybrid system applied to a number of musical
tasks, often involving real-time interaction between a performer and a
music-production system (Camurri et al., 1994); see chapter by Antonio
Camurri in this volume.

One of the problems Kippen and Bel identified in developing
their Bol Processor grammar was the difficulty of knowing what should
go into a grammar: how is the researcher to determine what the rules of
the grammar should be? The common paradigm has been to make a first
attempt, to examine its results, then, on a rather ad hoc basis, to attempt
some revisions to the grammar which will correct the errors of the
previous results. The cycle of testing and revision then begins again. Such
a strategy will probably never produce a perfect system, though it might
approach perfection, but the ad hoc nature of the rule revision is
disconcerting: how can the researcher have any confidence that the
revisions are the best to propose in the circumstances? It is a characteristic
of an intelligent animal that it learns from its experience and performs
better next time in similar circumstances. In fact, this behaviour is more
characteristic of intelligence than is behaving well in every circumstance.
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One of the goals of Artificial Intelligence, then, is systems that learn, and
these can be found in Music-Al also. Kippen and Bel attempted to build
learning into their system so that rule strengths could be adapted
automatically and so that at least some of the new-rule generation process
could be automated (1989). Musical learning systems, however, are best
exemplified in the work of Widmer, who has completed projects which
learn counterpoint rules (Widmer, 1992) and which learn expressive
performance (Widmer, 1996). EMI system (Cope, 1991), which learns to
compose music in the style of the music given to it, does not properly
belong in this category of intelligent learning systems because the
learning requires a considerable degree of input from the user of the
system also. While it is true that intelligent animals often learn best with
teachers, these teachers do not interfere with the functioning of the animal
in any way other than the normal channels of interaction. (Teachers do not
resort to brain surgery, in other words.) Furthermore, it is a, characteristic
of intelligent animals that they learn spontaneously, and it is this
characteristic that is most.sought in Al research in learning.

A number of characteristics of intelligent behaviour, including the
one of spontaneous learning just mentioned, gave rise at the end of the
1980s to a new paradigm in computing variously called connectionism,
parallel distributed processing, or neural networks. Two of the most important
motivations were the observation that intelligent behaviour could not
possibly arise from the mechanisms proposed by traditional symbolic Al
approaches at the speed at which it does in animals. Furthermore, it is a
characteristic of intelligent animals that, in surroundings which they have
never before encountered, and therefore surroundings for which they
have no perfectly applicable knowledge, they are able to perform
tolerably well. Traditional Al systems, however, when presented with
something somewhat different from their intended task, generally
perform spectacularly badly. This is sometimes referred to as brittleness.
In the new paradigm, which is clearly explained in Leman (1992) and
other sources, the behaviour of a system results from the net effect of the
behaviour of a number, possibly a very large number, of simple but
interacting processing units. When appropriately configured, such
systems are capable of learning, in the sense that their behaviour
approaches the desired behaviour. Furthermore they typically perform
moderately well with unfamiliar input rather than exhibiting the
brittleness of classical systems. Such systems have been used with
remarkable success in such diverse domains as tonal theory (Leman, 1994,
1995), the classification of timbre (Cosi et al., 1994), and the quantisation of
thythm (Desain and Honing, 1992). Desain and Honing (1992) include a
direct comparison of a classical and a network system performing the
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same task. From the engineering perspective, such systems often perform
well. From the cognitive science perspective, however, they involve a total
shift of philosophy. It is inappropriate to use a network system in the hope
of discovering the rules of tonal harmony, for example, at least in the form
that they are traditionally expressed. The knowledge which a network
system acquires during its learning is distributed through the connections
of the network; one cannot necessarily examine the state of the network
after training and directly extract from it a rule in the form “if X then Y”,
as one often can from a learning system based on classical computing.

The philosophical shift has justifications other than the utility of
such network systems, expressed in Leman (1993), Lischka (1991) and
Kaipainen (1996), but it is important to realise quite how different it is
from the cognitive science which gave rise to grammars, KL-ONE, and the
like. Nor should it be thought that the new paradigm has supplanted or
should supplant the former one. Much recent work involves both kinds of
computing (e.g. Camurri and Leman, 1992; Goldman et al., 1995), often
assigning subsymbolic processing to a network while symbolic processing is
carried out using a more traditional kind of architecture. However, care
must be taken in ensuring that the mixture of the two philosophies is
sound in the goal of improving. The understanding of musical behaviour
— the cognitive-science goal which was argued above to the fundamental
to Music-Al - is not to be compromised.

Philosophy

In a precise discussion of Music-Al, there are three terms to be defined:
“music” “artificial” and “intelligence”. Some adumbrated definitions
were given above. “Artificial”, for example, was taken to mean man-
made and not occurring naturally in the universe. By this definition music
is also artificial, as is any other human product. A tightening of the
definition is warranted, restricting the word “artificial” to refer to human
products which are intended to emulate something else (which probably,
but perhaps not necessarily, occurs naturally), hence artificial pearls, etc.

“Music” is notoriously difficult to define (for a straightforward
discussion of some of the issues, see Davies, 1978), but all agree that while
it involves sound, it is impossible to define solely in terms of sound. The
classic test case is John Cage’s piece for piano 4'33”, during the
performance of which the only sounds heard are those which happen to
occur in the environment - the performer is not instructed to make any
sounds at all. If this piece, in which any sound can occur, is to be taken as
music, then any sound is music and so all sounds are music. This is clearly
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unsatisfactory as a definition of the word as normally understood. Even if
this extreme case is not admitted as a piece of music, it is not difficult to
name pieces in which all kinds of normally non-musical sounds have
been included, and it is extremely difficult to find physical differences
between the sounds which characterise music and those that do not. Thus
definitions of music generally make reference in some way or other to
human activities, whether composition, performing or listening. If, then,
the very definition of music requires reference to human activities, any
computing system which is supposed to perform a musical task must also
take account of those human activities. As an example, consider a sound
synthesis system, a common kind of musical computing system which is
not normally considered an example of artificial intelligence. In designing
any such system, choices must be made about the frequency ranges to be
accommodated (and hence the sampling rates to be used). For a musical
system, the appropriate choices are to set the frequency range to the
maximum humanly audible range, since the results are intended to be
listened to by people and not bats or any other animal with a different
audible range. Pursuing the example further, suppose that the designer
wishes the user of the system to be able to specify the sound output in
terms of individual sound events, which we might call “notes”, and to
specify the time of occurrence for each note. This will require some
reference to the phenomena by which we segment a stream of sound into
separate events, and also an understanding of where the perceived “start-
time” of a note is in relation to the physical beginning of the sound, its
amplitude envelope, etc. Going yet further, the user might want to be able
to specify the grouping of notes into phrases and have this phrasing
reflected in the synthesised sound. This would require an understanding
of the relation of variations in timing and other factors to perceptions of
phrase beginnings and endings (see Todd, 1985; Sundberg, Friberg, and
Frydén, 1991). The point of the argument is that if any system is to be
musical it must make reference to human behaviour, and to that extent
any musical system must involve artificial intelligence. There is no
obvious place at which to draw a boundary between where one must take
into account human behaviour which is not intelligent, and where one
must take into account behaviour which is intelligent. By this argument,
furthermore, the discipline of Artificial Intelligence becomes not a
peripheral specialisation but a core element of successful computer
science.

“Intelligence” is the most difficult of the three terms to define,
and the one whose definition is most contentious. It was suggested in the
introduction above that artificial intelligence meant programming
computers to behave like people. Later, spontaneous learning and
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performing with moderate success in unfamiliar surroundings were
suggested as characteristics of intelligent behaviour. A third definition is
suggested by a common usage of the word “intelligent” with respect to
software. An “intelligent help system”, for example, is one which
determines the information to be provided to the user on the basis of the
user’s recent activities. In other words the behaviour of the system is
sensitive to its environment. This is true of every piece of software - its
output it determined by its input — but here there is a significant
difference in the domain of the input. Normally software uses a very
restricted input; so-called intelligent software instead attempts to receive
input from as much as possible of its environment. Clearly this is related
to the definition of intelligent behaviour as performing moderately well
in unfamiliar surroundings, because attention is payed to the totality of
the surroundings. Furthermore, if the environment is taken to include the
past, then this definition of intelligence as behaving appropriately in the
environment will include learning also. However, computers generally
have extremely limited channels for receiving input from the
environment, and considerable work is needed in this area if we are to see
behaviour which is really intelligent under this definition. In fact, if we
really want an intelligent computer to behave in the same way in which a
human would in a given environment, including that environment’s past,
then the computer would have to have the same channels of input, the
same memories, the same means of acting upon the environment, and
indeed the same objectives. In short, the computer would be that person.
Artificial intelligence under this definition, then, is an impossible goal.
Some of these difficulties are overcome by limiting the channels
of communication, as in the definition of intelligence encapsulated in the
Turing test, proposed by Alan Turing at the very beginning of the
discipline of Artificial Intelligence. The test is as follows. Two rooms have
teletypes (the technicalities are not significant — any restricted means of
communication usable by both computers and humans would do) as the
only means of communication with the outside world. In one room is a
computer connected to the teletype, in the other a person. Those on the
outside may ask questions via the teletype, in a restricted domain. If they
cannot tell from the responses to the questions which room contains the
computer and which the person, the computer has passed the test and
may be described as intelligent. A musical version of this test dould be
proposed also. (For a similar argument making a point related to the one
above about the essentially human nature of musical activity, see Cross,
1993.) Two rooms are set up with a channel by which music is
communicated to the outside world. We might also allow a channel by
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which some sort of feedback (applause, perhaps, or other pieces of music)
goes into the room. In one room is a composer; in the other is a computer.
The test is passed when those outside the rooms cannot tell which
contains the computer. While it might be possible for a computer to pass
this test in practice (i.e. in an empirical sense), there is an argument that a
computer could never pass the test in principle (i.e. in a rationalist sense).
(While the test might appear inherently empirical, because it
fundamentally involves observations, it is generally not conducted in
practice but as a “thought experiment”, and so is not empirical at all.) It is
often argued that originality is an essential characteristic of music. (From
the perspective of composing, this is commonplace; for a perspective from
listening, see Kunst, 1978). Computers are digital automata, and so their
behaviour is always, in principle at least, predictable and therefore cannot
be original. Thus a computer cannot, in principle, pass this test. There is a
persuasive counter-argument that dynamic systems, and so-called chaotic
systems in particular, can be deterministic, in the sense that their future
state is entirely determined by their current state, but yet unpredictable.
In fact such systems have been used for creating both music and visual art
(the visual examples are quite well known; see Little, 1993 for a musical
example). However, this depends, in principle, on the dynamic system
operating in an infinite domain (e.g. using rational numbers), and
computers can only simulate this by a finite domain of very many
elements. The argument in principle, therefore, remains. The argument in
practice will not be defended because clearly it is a hopeless task for a
person to know all the details of the state of a computing system, finite as
the number of possible states might be. Indeed, it is now to matters of
practice that we will turn.

Pragmatics

If the goals of Music-Al suggested above — behaving in a completely
human-like way and composing music indistinguishable from humanly-
composed music — are impossible to achieve, what should Music-Al
realistically aim at? In fact, we frequently want superhuman, and
therefore non-human, behaviour from computers. We often want
computers to process data in larger quantities, at greater speed and with
greater accuracy than is humanly possible. In these cases, putting aside
questions about whether the computer’s behaviour is really intelligent, it
is precisely because it is artificial (other-than-human) that it is useful.
Thus the real goal in developing a computer system is often for it to
behave in a human-like manner in some respects but in a non-human-like



