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Preface

During the period of the 8th Annual Conference of the China Society
for Industrial and Applied Mathematics (CSIAM) held on August 24 -
30, 2004 in Xiangtan, Hunan Province, China, the Symposium on Fron-
tiers and Prospects of Contemporary Applied Mathematics was held.
About 300 representatives from over 100 domestic universities, scien-
tific research institutions and enterprises and from abroad attended the
conference. At the symposium some Chinese and foreign scholars and
experts were invited to give plenary lectures. They introduced current
progress and expressed their prospects on some important topics of the
industrial and applied mathematics. Besides, at the section meetings
many participants gave academic reports. Considering that these ple-
nary lectures have high academic values due to their representative and
perspective, we collected them in a volume for publication. Meanwhile a
small part of the academic reports provided in the sections was also se-
lected for this volume. We hope that the publication of this book would
effectively help readers understand the current situation of the industrial
and applied mathematics and the hot issues in this area. Also we hope
the publication of this book would be helpful in pushing the industrial
and applied mathematics forward.

We would like to take this opportunity to express our heartfelt thanks
to all of the speakers at the symposium for their great support, especially
to those speakers who wrote papers for this book. We would also like
to show our sincere thanks and respect to the National Natural Science
Foundation of China, the Mathematical Center of Ministry of Education
of China and Xiangtan University for their financial help and support;
and to Higher Education Press and World Scientific Publishing Company
for their hard work and efforts in publishing this book.

Li Tatsien
October 2005
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An Iterative BEM for the Inverse Problem
of Detecting Corrosion in a Pipe*
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Mourad Choulli

Département de Mathématiques Université de Metz Ile
du Saulcy, 57045 Metz cedex, France.
E-mail: choulli@math.univ-metz.fr
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Department of Computer Science and Engineering, Penn
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E-mail: weighsun@hotmail.com

Abstract

In this paper, we consider an inverse problem of determining
the corrosion occurring in an inaccessible interior part of a pipe
from the measurements on the outer boundary. The problem is
modelled by the Laplace equation with an unknown term + in the
boundary condition on the inner boundary. Based on the Maz’ya
iterative algorithm, a regularized BEM method is proposed for
obtaining approximate solutions for this inverse problem. The
numerical results show that our method can be easily realized
and is quite effective.

1 Introduction

Detecting the corrosion inside a pipe is one of the most important top-
ics in engineering, especially in the safety administration of the nuclear
power station. There are several ways to do this. In this paper, we will
discuss the mathematical theory and numerical algorithm for a method of
detecting the corrosion by electrical fields. More exactly, we consider an

*The authors are partly supported by NNSF of China (No. 10271032 and No.
10431030) and Shuguang Project of Shanghai Municipal Education Commission
(N.E03004).
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inverse problem of determining the corrosion occurring in an inaccessible
interior part of a pipe from the measurements on the outer boundary.
Our goal is to determine information about the corrosion that possibly
occurs on an interior surface of the pipe, which is an ‘inaccessible’ part,
and we collect electrostatic data on the part of the exterior surface of
the pipe, which is an ‘accessible’ part.

In the case that the thickness of the pipe is sufficiently small when
compared with the radius of the pipe and the Cauchy data are given on
the whole outer boundary, this inverse problem can be treated by the
Thin Plate Approximation method (TPA). The algorithm and numerical
analysis can be found in [7]. But this algorithm works only under the
assumption that the thickness is small enough when compared with the
radius of the pipe. The case, in which the Cauchy data are given on
part of the outer boundary and the smallness assumption is abandoned,
has not been studied and it is obvious that it is of great importance for
practice problems.

The main difficulty for this inverse problem is the ill-posedness of the
inverse problem. The measured data are given only on part of the outer
boundary and we want to determine an unknown function in the inner
boundary. Because of the ill-posedness, the errors in measured data will
be enlarged in the numerical treatment if we do not treat it suitably.
In this paper, based on the Maz’ya iterative method, we propose a new
BEM algorithm for this inverse problem. It can be easily realized. The
numerical results show the efficiency of this method.

This paper is organized as follows:

1. Formulation of the inverse problem,

2. The iterative boundary element method,

3. Numerical examples,

4. Conclusions.

2 Formulation of the inverse problem

Suppose a domain @ = {z |r; < |z| < r2} C R? (see Figure 2.1) and the
boundaries I'y = {z||z| = r1}and Ty = {z||z| = r2}.
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Assume that Q2 is a metallic body with constant conductivity. In the
domain €2, we consider an electrostatic field. The electric potential u
satisfies the Laplace’s equation in £, i.e.,

Au =0, in Q. (2.1)

Let Ty be an open set of the outer boundary I'; of  which is an
‘accessible’ part. On I'y, the Dirichlet data and the Neumann data of
the electric potential u are given, i.e.,

u(z) = ¢(z), z € Iy, (2.2)
uy(z) = 9(x), z €T, (2.3)

where u,, is the outer normal derivative of v on the boundary._
We denote the rest part of the exterior boundary of Q by Iy,

Ty =T \To.

We assume that the corrosion only happened on the interior boundary
of the domain 2 and the corrosion can be described by a non-negative
function 7 in the boundary condition on the interior boundary. That is,

u, +yu =0, on T4y, (2.4)

where v > 0 represents the corrosion damage.
The inverse problem we discuss in this paper is to find the unknown
coefficient v from the Cauchy data ¢ and ¢ on I'y.
We will treat this inverse problem by the following steps:
Step 1: Get the Cauchy data on the interior circle by solving the Cauchy
problem for Laplace’s equations.
We use the iterative boundary element method to solve the Cauchy
problem:
Au(z) =0, z €,
u(e) =¢(x), zel, (2.5)
un(z) = ¥(z), z €Ty

Our goal is to get the Cauchy data on I'y:
u(:z:) = ¢1 ((L‘), zely; un(x) = 1/)1(11?), x €Ty.

Step 2: Get the impedance v from the Cauchy data on the interior
circle.
For the boundary condition

Uy +yu =0, z on I'y,

7 can be obtained by

y=in =_%, if ¢y # 0.

u'r
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Remark 2.1. It can be proved that the measure of the zero set {¢; = 0}
can not be non-zero. Therefore, our method is valid in the case of ¢; # 0.

3 The iterative boundary element method
for this Cauchy problem

In this section we will give the iterative boundary element method (see
(9], [10],[11]) for the Cauchy problem in Step 1. We will prove the con-
vergence rate only under the regularity assumption. Some numerical
simulation results for the Cauchy problem are also presented.

3.1 Description of the algorithm

In {11}, V.A. Kozlov, V.G. Maz’ya and A.V.Fomin proposed the algo-
rithm as follows: _

1. Specify an initial boundary guess up on I'; and T's.

2. Solve the well-posed mixed boundary value problem:

AU (z) = 0, z e,
U =y, zel,, (3.1)
U® =y, zel;ul,.

to determine U/(® (z) forz € Q and o = ,(10) (z) forz e U fz.
3 (i). Suppose that the approximation g is obtained. We can solve the
mixed boundary value problem:

AUGHD =0, zeQ,
URKY = ¢ z €T, (3.2)
Ut =g, zernul,.
Then we can determine U**+1)(g) for z € Q and ug41 = U+ () for
zeluTls.
(ii) By uk+1, we can obtain UZ*+2)(z) for z € Q and qpyq =
U+ (z) for z € I'1UT'; by solving the mixed boundary value problem:

AUEK2) = o, z €,

U =y, zel,, (3.3)
U(2k+2) — Uk+1, zelU fg.

4. Repeat step 3 for & > 0 until a prescribed stopping criterion is
satisfied.

The stopping criterion we will use in this paper is ||ug+1 —uk|| L3(Tyury) <
€, where € is a small positive number.



An Iterative BEM for the Inverse Problem - - - 5

Remark 3.1. The mixed boundary value problems (3.2) and (3.3) are
well-posed problems.

We solve the mixed boundary value problems (3.2) and (3.3) by the
boundary element method, which can be found in a lot of guide books
on the boundary element method, for example, [1]. In the following, we
give only the outline of the iterative BEM form.

Consider the following mixed boundary value problem in two-
dimensional case:

Au =0, in 9,
u=f, on TI'p, (3.4)
n =9, on In.

As we have known, the foundational integral formula of the harmonic
function

Ou ou*

u(M;) —/ (u % 61/)021“, M; e Q, (3.5)
where u* = 211r In 1 - represents the foundational solution of the
Laplace’s equation. And the boundary integral formula is :

L 0u ou*
ciu(M;) —/ ( 3w Yo ) dr, M; € 09. (3.6)

Equation (3.6) can be discretized as follows:

N N
ciui + Z/ ug*dl’ — Z/ u*qdl’ = 0. (3.7)
j=17Ti j=1Tj

The values of u and g in the integrands of (3.7) are constant within each
element, and u and ¢ consequently can be taken out of the integrals.
This gives

N N
Oiui-!-j;(/rjqdF)u,-—Z(/Fju*aT)qj:O. (3.8)

Jj=1

With the given boundary condition, we can rearrange equation (3.8)
with all the unknowns on the left-hand side and a vector on the right-
hand side obtained by multiplying matrix elements with the known val-
ues. This gives

coi + i(/ ) s (/nu*dr>qj

j=1 j=m+1

- 2 (fra)u-5 (] wa)o

Jj=1

(3.9)
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The whole set of equations can be expressed in a matrix form as

A(%)=3(ar)

where up, qp represent the Dirichlet and Neumann data on I'p and
uy,qn represent the Dirichlet and Neumann data on I'y.

The step 3 of our iterative method can be presented as:

(i) solving the following linear equations :

A(¢k+1) =B(¢)
Uk+1 k

and get ur41 that will be needed in the next equations.
(i) With ug41, we can get gr4+1 by solving

B<¢k+l>=A< ?1’ )
k+1 Uk+1

Our boundary element method gives a problem about computing
linear equations twice in every iterative. It is easy to realize it by the
technique of Matrix computing.

3.2 Convergence analysis

In this section we give the convergence analysis under the regularity
assumption on the unknown potential u.

First of all, we simplify the subproblem 1 as the following Cauchy
problem for Laplace equation:

Let 2 C R? be an open bounded set and I'y, 'y be two parts of the
boundary 992, satisfying I't UT's = 8Q and 'y NI’y = 0.

Ay =0, z in 9,
u=f, z on T4, (3.10)
u, =g, z on Iy,

where v is the unit outer derivative vector.

Given the Cauchy data (f, g) € H/2(I';) xH&éz (T1)’, we assume that
there exists an H!-solution of problem (3.10). We are mainly interested
in the determination of the Neumann trace.

The following work is to introduce an operator T : H&f(rz)’ —
H&é ?(T'2)" and represent the above iterative. Refer to 8].

We can simplify our iterative method as

Aw=0 inQ; wll"1=f§ “)VA|F2=¢’
Av=0 inQ wv,lr, =g vir, =49
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We define the operators Ly, : Hi/*(T2) — H(Q) and Ly : HY2(T3)
— H'() by
L.(¢) :=w € H(Q),
Lqa(v) :=v € H(Q).
Define the Neumann trace operator v, : H}(Q2) — (}({2 (T2)', Yn(u)
:= u,,|r, and the Dirichlet trace operator 74 : H'(Q) — HY/%(I2),
’Yd(u) = ulrz'
So we can rewrite the iterative as
w=Ln(¢x); ¥ ="aw),
v=LaWk); k+1=m()
If we define T' := 7y, 0 Lq 0 74 © L, we conclude that T is an affine
operator on Hé({ ?(I'2), which satisfies

dkt1 = T(dx) = T*1(¢o).

That means we are able to describe the iterative with the powers of
the operator T. As L,, and Ly are both affine, we can write

Ln(') = Lil() +wy, Ly(-) = Lfi() + vy,

where the H!(Q, P)-functions ws and v, depend only on f and g, re-
spectively.
With these definitions we have

$k+1 =T(k) =mo Liorygo Ln(¢k) +mo Lo ’Y(Wf) + Tn(vg)
Tl(¢k) z! 9
=T+ (o) + ZE_oT{ (21,9)-

From (8], we know the operator T} is positive, self adjoint, injective,

regularly asymptotic in Hé({ 2 and non expansive. In [8] the convergence
of this iterative method is presented. Under the source condition which is
not so obvious for the engineers. Here we only use regularity assumptions
in the convergence analysis. Since our problem is in an annular domain,
the following theorems are discussed in the annular domain. But the
results can be extended into a general domain.

Firstly, we define the Sobolev spaces of periodic functions

Heo(—m,m) = {(¥) = > _ ¢ ""]E(l +7%)°¢2 < 0}, 5 € R. (3.11)

j€Z Jj€Z
Before we give the theorems, we introduce the following logarithmic-
type source conditions:

fOy = {(()l,n(exp(l)k“))"’, A>0, (3.12)
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Theorem 3.2. Set Q be an annular domain, @ C R?. Let (f,g) be
consistent Cauchy data and assume that the solution ¢ of the Cauchy
problem (3.10) satisfies

s 1
¢— ¢ € Hperv

where ¢o € H is some initial guess. Let p > 2, (fe,g.) be some given
noisy data with ||z — z54]| < €, € > 0 and k(e, zc) be the stopping rule
determined by the discrepancy principle

k(e, 2) = min{k € N||ze — (I — T))¢ || < pe}. (3.13)
Then there exists a constant C, depending on ¢g only such that
i) ¢ — okl < Cink)~Y,
i) |lze — (I = T)¢tll < Ck™(ink) ™,
for all iteration indez k satisfying 1 < k < k(e, z).

Theorem 3.3. Set k. = k(e, 2.). Under the assumption of Theorem 3.2
we have

i) ke(ln(ke)) = 0(6_1),
i) 6 - %Il < O((~Inve) ™).
The next lemma, is most important for the proof of the theorems.

Lemma 3.4. Set Q be an annular domain, Q C R%. Then the solution

¢ of the Cauchy problem (3.10) in this domain satisfies

6 — o € H,,, (3.14)

where ¢o € H is some initial guess and H,,, is the Sobolev spaces of
periodic functions defined as in (3.11). This regularity assumption is
equivalent to choosing some 1 € H;,’e, satisfying

$—¢0 =f(I_T2)1/)9
where f is the logarithmic-type source conditions (3.12).

Proof. For simplicity, we consider Cauchy problem (3.10) in the annular
domain
I ={(R,0);6 € (—m,m)},R > 1,

F2 = {(170);06 (—71',7(’)},
where f(6) = 3°7L; a;sin(j8), g(8) = Y1, b; sin(56).
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Given the Neumann data

N
$o() = _ o,; sin(j6),

j=1
we can get
e o]
(Tido)(8) = ) As6o,; sin(j6),
j=1
where ) .
N = (R? _R—J)2
77 (RI+ R9)?

For ¢—¢o € H,.,, there exists a;, (j = 1--- N) satisfying E;‘V=1 a? < 00,

N
$—o=_a;j " sin(jy).

i=1

So we get
N

> (14 5%)a272 < 0.
Jj=1
To the logarithmic-type source conditions (3.12), the source condition
is to find some 3 € HY,,, satisfying
é—¢o = F(I - W)y
So our problem comes into finding this 1.
Set ¢ = }:;v___l b; sin(jy), then
b= —d
Jf(1=2X)

From the estimate

exp(1) Ri — R
htad 4 S I T -
In (1 — /\j) >1-lIn (exp(l) [1 TR
- —in 2RI
- Ri + R
> 2jlnR — 1,
1) 1
(20 <rpm(
1-2 1- 335

RI+ R

<2jinR+ 1 — [n2,
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we have )
2jlnR— 1< ———<2jilnR+1-1In2
7 f1=X)
And withzg;l a2 < 0o, we can obtain >y, b2 < oo, e, € HY,. O

Lemma 3.5. Let (f, g) be consistent Cauchy data and assume that the
solution ¢ of the fized point equation satisfies the source condition

¢—do=f(I-T)y, for some ¢ € H,

where ¢g € H is some initial guess and f is the function defined in
(3.12) with p > 1. Let u > 2, (fe,g9c) be some given noisy data with
llze — z5,6|l < €, € >0 and k(e, 2c) the stopping rule determined by the
discrepancy principle. Then there ezists a constant C,depending on p
and ||[¢|| only such that

i) ¢ — il < C(ink)~,
i) |lze — (I - T)¢gll < Ck™'(Ink)™?,

for all iteration index k satisfying 1 < k < k(e, z¢)-

Lemma 3.6. Set k. = k(e, 2¢). Under the assumption of Lemma 3.5 we
have

i) ke(in(ke))? = O(e™),
i) ¢ — %Il < O((~inve)™?).

The proof of lemma 3.5, lemma 3.6 can be found in [4].

With all the lemmas above, it is easy to give the proof. Theorem
3.2 can be deduced by lemma 3.4 and lemma 3.5. Theorem 3.3 can be
deduced by lemma 3.4 and lemma 3.6.

3.3 Numerical experiment for the Maz’ya iteration

In this section, we will test the previous algorithm to calculate a few
examples with Matlab. For simplicity, we set the domain 2 with interior
radius 1 and outer radius 1+ b in the following experiments. The number
of the boundary element is n. Since we use the quadratic elements, we
take n nodes on the outer circle and also n nodes on the interior circle.
And set the number of nodes whose data are given to be m. we consider
a harmonic function:

u(z,y) = log [(z — 0.5)% + (y — 0.5)2].

We use the prescribed algorithm to get the unknown data on the bound-
ary, and then use the harmonic basic integral formulation to calculate
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the data on the circle with the radius 1 + a(a < b). In the following
numerical experiment the noise level is § noisy. The figures on the left
show the exact solution compared with the approximate solution, and
the dot line represents the approximate solution The real line represents
the exact solution. The figures on the right side are the curves of the ab-
solute errors. We use the stopping rule as |Jux+1 — uk|lL2(r,ur;) < 1072

Example 1. In this experiment we take n = 100, 200, m = 50, 100,b =
1,a = 0.5 and § = 0.01, respectively.

n=100, m=50:

Figure 3.1 Figure 3.2
n=200, m=100:

Figure 3.3 Figure 3.4

So if you want higher precision you should use more element during the
process of this iterative.



