
CLASSICAL THEORETICAL PHYSICS

Greiner

CLASSICAL
MECHANICS · POINT
PARTICLES AND
RELATIVITY

经典力学 点粒子和相对论

Springer

光界图出出版公司 www.wpcbj.com.cn

图书在版编目(CIP)数据

经典力学.点粒子和相对论:英文/(德)葛莱纳著.一 北京:世界图书出版公司北京公司,2007.10

书名原文: Classical Mechanics: Point Particles and Relativity

ISBN 978-7-5062-9159-0

Ⅰ. 经… Ⅱ. 葛… Ⅲ. 经典力学—教材—英文 Ⅳ. 031

中国版本图书馆CIP数据核字(2007)第153443号

书 名: Classcal Mechanics: Point Particles and Relativity

作 者: W. Greiner

中 译 名: 经典力学: 点粒子和相对论

责任编辑: 高蓉 刘慧

出版者: 世界图书出版公司北京公司

印刷者: 北京世图印刷厂

发 行: 世界图书出版公司北京公司 (北京朝内大街 137 号 100010)

联系电话: 010-64015659,64038348

电子信箱: kjsk@vip.sina.com

开 本: 16 开

印 张: 32.5

版 次: 2008年1月第1次印刷

版权登记: 图字:01-2007-4609

书 号: 978-7-5062-9159-0/O·625 定 价: 85.00 元

世界图书出版公司北京公司已获得 Springer 授权在中国大陆独家重印发行

Walter Greiner

Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Robert Mayer Strasse 10 Postfach 11 19 32 D-60054 Frankfurt am Main Germany greiner@th.physik.uni-frankfurt.de

Library of Congress Cataloging-in-Publication Data Greiner, Walter, 1935-

Classical mechanics: point particles and relativity / Walter Greiner.

p. cm.-- (Classical theoretical physics) Includes bibliographical references and index. ISBN 0-387-95586-0 (softcover: alk. paper)

1. Mechanics--Problems, exercises, etc. 2. Relativity (Physics)--Problems, exercises, etc. 1. Title II. Series.

QC125.2 .G74 2003 531--dc21

2002030570

ISBN 0-387-95586-0

Translated from the German Mechanik: Teil 2, by Walter Greiner, published by Verlag Harri Deutsch, Thun, Frankfurt am Main, Germany, © 1989.

© 2004 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People's Republic of China only and not for export therefrom.

987654321

SPIN 10892857

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg

A member of BertelsmannSpringer Science+Business Media GmbH

Foreword

More than a generation of German-speaking students around the world have worked their way to an understanding and appreciation of the power and beauty of modern theoretical physics—with mathematics, the most fundamental of sciences—using Walter Greiner's textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science in a series of closely related textbooks is not a new one. Many older physicians remember with real pleasure their sense of adventure and discovery as they worked their ways through the classic series by Sommerfeld, by Planck, and by Landau and Lifshitz. From the students' viewpoint, there are a great many obvious advantages to be gained through the use of consistent notation, logical ordering of topics, and coherence of presentation; beyond this, the complete coverage of the science provides a unique opportunity for the author to convey his personal enthusiasm and love for his subject.

These volumes on classical physics, finally available in English, complement Greiner's texts on quantum physics, most of which have been available to English-speaking audiences for some time. The complete set of books will thus provide a coherent view of physics that includes, in classical physics, thermodynamics and statistical mechanics, classical dynamics, electromagnetism, and general relativity; and in quantum physics, quantum mechanics, symmetries, relativistic quantum mechanics, quantum electro- and chromodynamics, and the gauge theory of weak interactions.

What makes Greiner's volumes of particular value to the student and professor alike is their completeness. Greiner avoids the all too common "it follows that...," which conceals several pages of mathematical manipulation and confounds the student. He does not hesitate to include experimental data to illuminate or illustrate a theoretical point, and these data, like the theoretical content, have been kept up to date and topical through frequent revision and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including something like one hundred completely worked examples in each volume. Nothing is of greater importance to the student than seeing, in detail, how the theoretical concepts and tools

vi FOREWORD

under study are applied to actual problems of interest to working physicists. And, finally, Greiner adds brief biographical sketches to each chapter covering the people responsible for the development of the theoretical ideas and/or the experimental data presented. It was Auguste Comte (1789–1857) in his *Positive Philosophy* who noted, "To understand a science it is necessary to know its history." This is all too often forgotten in modern physics teaching, and the bridges that Greiner builds to the pioneering figures of our science upon whose work we build are welcome ones.

Greiner's lectures, which underlie these volumes, are internationally noted for their clarity, for their completeness, and for the effort that he has devoted to making physics an integral whole. His enthusiasm for his sciences is contagious and shines through almost every page.

These volumes represent only a part of a unique and Herculean effort to make all of theoretical physics accessible to the interested student. Beyond that, they are of enormous value to the professional physicist and to all others working with quantum phenomena. Again and again, the reader will find that, after dipping into a particular volume to review a specific topic, he or she will end up browsing, caught up by often fascinating new insights and developments with which he or she had not previously been familiar.

Having used a number of Greiner's volumes in their original German in my teaching and research at Yale, I welcome these new and revised English translations and would recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley
Henry Ford II Professor of Physics
Yale University
New Haven, Connecticut, USA

Preface

Theoretical physics has become a many faceted science. For the young student, it is difficult enough to cope with the overwhelming amount of new material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle physics; and this knowledge should be acquired in just eight to ten semesters, during which, in addition, a diploma or master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early as possible, in order to create interest and excitement that in turn set free essential new energy.

At the Johann Wolfgang Goethe University in Frankfurt am Main, we therefore confront the student with theoretical physics immediately, in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I—An Introduction are the courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins, and Quantum Mechanics II—Symmetries, Statistical Mechanics and Thermodynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from these, a number of supplementary courses on special topics are offered, such as Hydrodynamics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear Models, Models of Elementary Particles, and Solid-State Theory.

This volume of lectures, Classical Mechanics: Point Particles and Relativity, deals with the first and more elementary part of the important field of classical mechanics. We have tried to present the subject in a manner that is both interesting to the student and easily accessible. The main text is therefore accompanied by many exercises and examples that have been worked out in great detail. This should make the book useful also for students wishing to study the subject on their own.

Beginning the education in theoretical physics at the first university semester, and not as dictated by tradition after the first one and a half years in the third or fourth semester, has brought along quite a few changes as compared to the traditional courses in that discipline.

VIII PREFACE

Especially necessary is a greater amalgamation between the actual physical problems and the necessary mathematics. Therefore, we treat in the first semester vector algebra and analysis, the solution of ordinary, linear differential equations, Newton's mechanics of a mass point culminating in the discussion of Kepler's laws (planetary motion), elements of astronomy, addressing modern research issues like the dark matter problem, and the mathematically simple mechanics of special relativity.

Many explicitly worked-out examples and exercises illustrate the new concepts and methods and deepen the interrelationship between physics and mathematics. As a matter of fact, this first-semester course in theoretical mechanics is a precursor to theoretical physics. This changes significantly the content of the lectures of the second semester addressed in the volume Classical Mechanics: System of Particles and Hamiltonian Dynamics.

The new mathematical tools are explained and exercised in many physical examples. In the lecturing praxis, the deepening of the exhibited material is carried out in a three-hour-per-week *theoretica*, that is, group exercises where eight or ten students solve the given exercises under the guidance of a tutor.

Biographical and historical footnotes anchor the scientific development within the general context of scientific progress and evolution. In this context, I thank the publishers Harri Deutsch and F. A. Brockhaus (*Brockhaus Enzyklopädie*, F.A. Brockhaus, Wiesbaden—marked by [BR]) for giving permission to extract the biographical data of physicists and mathematicians from their publications.

We should also mention that in preparing some early sections and exercises of our lectures we relied on the book *Theory and Problems of Theoretical Mechanics*, by Murray R. Spiegel, McGraw-Hill, New York, 1967.

Over the years, we enjoyed the help of several students and collaborators, in particular, H. Angermüller, P. Bergmann, H. Betz, W. Betz, G. Binnig (Nobel prize 1986), J. Briechle, M. Bundschuh, W. Caspar, C. v. Charewski, J. v. Czarnecki, R. Fickler, R. Fiedler, B. Fricke (now professor at Kassel University), C. Greiner (now professor at JWG-University, Frankfurt am Main), M. Greiner, W. Grosch, R. Heuer, E. Hoffmann, L. Kohaupt, N. Krug, P. Kurowski, H. Leber, H. J. Lustig, A. Mahn, B. Moreth, R. Mörschel, B. Müller (now professor at Duke University, Durham, N.C.), H. Müller, H. Peitz, J. Rafelski (now professor at University of Arizona, Tuscon), G. Plunien, J. Reinhardt, M. Rufa, H. Schaller, D. Schebesta, H. J. Scheefer, H. Schwerin, M. Seiwert, G. Soff (now professor at Technical University Dresden), M. Soffel (now professor at Technical University Dresden), E. Stein (now professor at Maharishi University, Vlodrop, Netherlands), K. E. Stiebig, E. Stämmler, H. Stock, H. Störmer (Nobel prize 1998), J. Wagner, and R. Zimmermann. They all made their way in science and society, and meanwhile work as professors at universities, as leaders in industry, and in other places. We particularly acknowledge the recent help of Dr. Sven Soff and Dr. Stefan Scherer during the preparation of the English manuscript. The figures were drawn by Mrs. A. Steidl.

The English manuscript was copy-edited by Kristen Cassereau and the production of the book was supervised by Timothy Taylor of Springer-Verlag New York, Inc.

Walter Greiner Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany

Contents

Fo	reword	v
Pr	eface	vii
ı	VECTOR CALCULUS	1
1	Introduction and Basic Definitions	2
2	The Scalar Product	5
3	Component Representation of a Vector	9
4	The Vector Product (Axial Vector)	13
5	The Triple Scalar Product	25
6	Application of Vector Calculus	27
	Application in mathematics: Application in physics:	27 31
7	Differentiation and Integration of Vectors	39
8	The Moving Trihedral (Accompanying Dreibein)—the Frenet Formulas	49
	Examples on Frenet's formulas:	55
		iv

9	Surfaces in Space	64
10	Coordinate Frames	68
11	Vector Differential Operations	83
	The operations gradient, divergence, and curl (rotation) Differential operators in arbitrary general (curvilinear) coordinates	83 96
12	Determination of Line Integrals	109
13	The Integral Laws of Gauss and Stokes	112
	Gauss Law: The Gauss theorem: Geometric interpretation of the Gauss theorem: Stokes law:	112 114 115 117
14	Calculation of Surface Integrals	125
15	Volume (Space) Integrals	130
H	NEWTONIAN MECHANICS	133
16	Newton's Axioms	134
17	Basic Concepts of Mechanics	140
	Inertial systems Measurement of masses Work Kinetic energy Conservative forces Potential Energy law Equivalence of impulse of force and momentum change Angular momentum and torque Conservation law of angular momentum Law of conservation of the linear momentum Summary The law of areas	140 141 141 142 142 143 144 144 149 150 150
	Conservation of orientation	151

CONTENTS	X
CONTENTO	-

18	The General Linear Motion	159
19	The Free Fall	163
	Vertical throw	164
	Inclined throw	166
20	Friction	172
	Existing phonomona in a viscous madium	172
	Friction phenomena in a viscous medium Motion in a viscous medium with Newtonian friction	172
	Generalized ansatz for friction:	179
21	The Harmonic Oscillator	196
00	Mathematical Interlude Corine Evention Euler's Formulae	210
22	Mathematical Interlude—Series Expansion, Euler's Formulas	210
23	The Damped Harmonic Oscillator	214
24	The Pendulum	229
25	Mathematical Interlude: Differential Equations	241
26	Planetary Motions	246
27	Special Problems in Central Fields	282
	The gravitational field of extended bodies	282
	The attractive force of a spherical mass shell	283
	The gravitational potential of a spherical shell covered with mass	285
	Stability of circular orbits	289
28	The Earth and our Solar System	295
	General notions of astronomy	295
	Determination of astronomic quantities	296
	Properties, position, and evolution of the solar system	308
	World views	315
	On the evolution of the universe Dark Matter	325 330
	What is the nature of the dark matter?	338
	nes is the nature of the dark matter;	550

	CON	ITENTS
Ш	THEORY OF RELATIVITY	361
29	Relativity Principle and Michelson-Morley Experiment	362
	The Michelson-Morley experiment	364
30	The Lorentz Transformation	370
	Rotation of a three-dimensional coordinate frame The Minkowski space Group property of the Lorentz transformation	372 374 383
31	Properties of the Lorentz transformation	389
	Time dilatation	389
	Lorentz-Fitzgerald length contraction	394
	Note on the invisibility of the Lorentz-Fitzgerald length contraction	390
	The visible appearance of quickly moving bodies	398
	Optical appearance of a quickly moving cube	398
	Optical appearance of bodies moving with almost the speed of light Light intensity distribution of a moving isotropic emitter	400 404
	Doppler shift of quickly moving bodies	407
	Relativistic space-time structure—space-time events	412
	Relativistic past, present, future	413
	The causality principle	414
	The Lorentz transformation in the two-dimensional subspace of the Minkowski	
	space	415
32	Addition Theorem of the Velocities	419
	Supervelocity of light, phase, and group velocity	42

xii

		xiii
33	The Basic Quantities of Mechanics in Minkowski Space	425
	Lorentz scalars	426
	Four-velocity in Minkowski space	427
	Momentum in Minkowski space	428
	Minkowski force (four-force)	428
	Kinetic energy	433
	The Tachyon hypothesis	442
	Derivation of the energy law in the Minkowski space	444
	The fourth momentum component	445
	Conservation of momentum and energy for a free particle	446
	Relativistic energy for free particles	446
	Examples on the equivalence of mass and energy	448
34	Applications of the Special Theory of Relativity	461
	The elastic collision	461
	Compton scattering	465
	The inelastic collision	468
	Decay of an unstable particle	470
ind	ex	485

CONTENTS

Examples

3.1	Addition and subtraction of vectors	11
4.1 4.2 4.3 4.4	Vector product Proof of theorems on determinants Determinants Laplace expansion theorem	19 20 22 22
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Distance vector Projection of a vector onto another vector Equations of a straight line and of a plane The cosine theorem The theorem of Thales The rotation matrix Superposition of forces Equilibrium condition for a rigid body without fixed rotational axis Force and torque Forces in a three-leg stand Total force and torque	27 28 28 29 29 31 32 34 35 37
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Differentiation of a vector Differentiation of the product of a scalar and a vector Velocity and acceleration on a space curve Circular motion The motion on a helix Integration of a vector Integration of a vector Motion on a special space curve Airplane landing along a special space curve	40 41 42 43 44 45 45 46 47
8.1 8.2 8.3 8.4	Curvature and torsion	55 55 57 61

XVÍ

8.5 8.6	Arc length	61 62
9.1	Normal vector of a surface in space	66
10.1 10.2 10.3	Velocity and acceleration in cylindrical coordinates	78 80 81
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	Gradient of a scalar field Determination of the scalar field from the associated gradient field Divergence of a vector field Rotation of a vector field Electric field strength, electric potential Differential operations in spherical coordinates Reciprocal trihedral Reciprocal coordinate frames	91 91 92 92 93 98 99
12.1	Line integral over a vector field	111
13.1 13.2 13.3 13.4	Path independence of a line integral Determination of the potential function Vortex flow of a force field through a half-sphere On the conservative force field	118 121 121 123
14.1 14.2	On the calculation of a surface integral	126 127
15.1 15.2	Calculation of a volume integral	131 132
16.1 16.2	Single-rope pulley	137 137
17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10	Potential energy Impulse of momentum by a time-dependent force field Impulse of force The ballistic pendulum Forces in the motion on an ellipse Calculation of angular momentum and torque Show that the given force field is conservative Force field, potential, total energy Momentum and force at a ram pile Elementary considerations on fictitious forces	143 145 146 147 151 153 154 155 156
19.1 19.2 19.3	Motion of a mass in a constant force field	168 168 171
20.1	Free fall with friction according to Stokes	173

EXAMPLES	xvii

20.2	The inclined throw with friction according to Stokes	175
20.3	Free fall with Newtonian friction	181
20.4	Motion of an engine with friction	184
20.5	The inclined plane	185
20.6	Two masses on inclined planes	187
20.7	A chain slides down from a table	188
20.8	A disk on ice—the friction coefficient	190
20.9	A car accident	191
20.10	A particle on a sphere	192
20.11	A ladder leans at a wall	194
20.12	A mass slides under static and dynamic friction	195
	•	
21.1	Amplitude, frequency and period of a harmonic vibration	204
21.2	Mass hanging on a spring	204
21.3	Vibration of a mass at a displaced spring	205
21.4	Vibration of a swimming cylinder	205
21.5	Vibrating mass hanging on two strings	206
21.6	Composite springs	208
21.7	Vibration of a rod with pivot bearing	209
22.1	Various Taylor series	212
23.1	Damped vibration of a particle	223
23.2	The externally excited harmonic oscillator	225
23.3	Mass point in the x, y-plane	226
	•	234
24.1	The cycloid	234
24.2	The cycloid pendulum	
24.3	A pearl slides on a cycloid	236
24.4	The search for the tautochrone	237
26.1	The Cavendish experiment	253
26.2	Force law of a circular path	266
26.3	Force law of a particle on a spiral orbit	267
26.4	The lemniscate orbit	267
26.5	Escape velocity from earth	268
26.6	The rocket drive	269
26.7	A two-stage rocket	271
26.8	Condensation of a water droplet	272
26.9	Motion of a truck with variable load	273
26.10	The reduced mass	274
26.11	Path of a comet	275
26.12	Motion in the central field	277
26.13	Sea water as rocket drive	279
26.14	Historical remark	280
27.1	Gravitational force of a homogeneous rod	286

XVIII EXAMPLES

27.2	Gravitational force of a homogeneous disk	287
27.3	Gravitational potential of a hollow sphere	287
27.4	A tunnel through the earth	289
27.5	Stability of a circular orbit	294
27.6	Stability of a circular orbit	294
28.1	Mass accretion of the sun	342
28.2	Motion of a charged particle in the magnetic field of the sun	343
28.3	Excursion to the external planets	345
28.4	Perihelion motion	356
30.1	Lorentz invariance of the wave equation	382
30.2	Rapidity	387
31.1	Decay of the muons	391
31.2	On time dilatation	391
31.3	Relativity of simultaneity	393
31.4	Classical length contraction	395
31.5	On the length contraction	396
31.6	Lorentz transformation for arbitrarily oriented relative velocity	418
	•	
33.1	Construction of the four-force by Lorentz transformation	430
33.2	Einstein's box	435
33.3	On the increase of mass with the velocity	437
33.4	Relativistic mass increase	439
33.5	Deflection of light in the gravitational field	440
33.6	Mass loss of sun by radiation	448
33.7	Velocity dependence of the proton mass	449
33.8	Efficiency of a working fusion reactor	450
33.9	Decay of the π^+ -meson	451
33.10	Lifetime of the K^+ -mesons	452
33.11	On nuclear fission	454
33.12	Mass-energy equivalence in the example of the π^0 -meson	455
33.13	On pair annihilation	456
33.14	Kinetic energy of the photon	456
33.15	The so-called twin paradox	458
33.16	Kinetic energy of a relativistic particle	460
34.1	The relativistic rocket	471
34.2	The photon rocket	473
34.3	The relativistic central force problem	474
34.4	Gravitational lenses	481

PART

VECTOR CALCULUS