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Preface

The ISFMA Symposium on Mathematical Models for Surface and
Subsurface Hydrosystems was held on September 13—17, 2004 at Hohai
University, Nanjing, China. With the increasing awareness of the heavy
burden placed on environmental resources and the need of industry and
public institutions to cope with more stringent regulations, the scope
of the Symposium was to focus on some specific, but very important,
environmental problems, namely surface and subsurface hydrosystems.
The purpose was to present state-of-the-art techniques to model such
systems, to promote the exchange of scientific ideas between French and
Chinese experts, and to foster new collaborations between France and
China in this field. Approximately 70 participants, including five French
representatives attended the Symposium.

The activities of the Symposium included five 3-hour keynote lec-
tures elaborating from the basics to recent advances in hydrosystem
modeling and several contributed presentations dealing with more spe-
cific problems. This volume collects the material presented in the key-
note lectures and some selected contributed lectures. The topics covered
include mixed finite element method, finite volume formulation, sharp
front modeling, biological process modeling, red tide simulation, and
contaminant transfer in coastal waters. As such, this volume should be
useful to graduate students, post-graduate fellows and researchers both
in applied mathematics and in environmental engineering.

As organizers of this Symposium, we would like to express our grati-
tude to various institutions for their supports: National Nature Science
Foundation of China, Mathematical Center of Ministry of Education of
China, Hohai University, French Embassy in Beijing, Consulate General
of France in Shanghai, ISFMA (Institut Sino-Francais de Mathématiques
Appliquées) and SOGREAH. We also thank all the lecturers and partici-
pants for their contributions. Qur deepest appreciation goes to Professor
Li Tatsien for his support in launching this Symposium. Special thanks
also to Matthieu Jouan for his instrumental help in the organization.

Deguan Wang, Christian Duquennoi, and Alexandre Ern
October 2005
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A Finite Volume Formulation of the Mixed
Finite Element Method for Triangular
Elements

P. Ackerer, A. Younes
IMFS UMR 7507 CNRS - ULP Strasbourg
2, rue Boussingault 67000 STRASBOURG FRANCE

1 Introduction

Numerous mathematical models are based on conservation principles and
constitutive laws, which are formulated by,

Ou

5 tV-a=1f (1.1)

g=—-KVu (1.2)

8

where s is a storage coefficient, K is the flux related parameter and q
is the flux of the associated state variable u. Equation (1.1) states for
the conservation principle and (1.2) states for the constitutive law like
Fourier’s law (u is the temperature), Fick’s law (u is the concentration
of a solute), Ohm’s law (u is the electric potential) or Darcy’s law (u is
the hydraulic head). The associated initial and boundary conditions are
of Dirichlet or Neumann type,

u(z,0) = uo(x) zeEN
u(z,t) = g1(z,t) (z € 90, ¢t > 0) (1.3)
(—KVu)-nsq = g2(z,t)  (x € 802,t > 0)

where Q is a bounded, polygonal open set of R2, 30! and 892? are parti-
tions of the boundary 0% of €2 corresponding to Dirichlet and Neumann
boundary conditions and nsq the unit outward normal to the boundary
oQ.

This system is often solved by finite volumes (FV) or finite elements
(FE) methods of lower order (see LeVeque [1] and Ern & Guermond [2]
among others). FV ensures an exact mass balance over each element
and continuous fluxes across common element boundaries. FE ensures
an exact mass balance on a dual mesh but leads to discontinuous fluxes
at common elements edges. However, finite element is considered as
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more flexible because of its high capacity of discretizing domains with
complex geometry.

The mixed finite element method (MFE) keeps the advantages of
both methods: accurate mass balance at the element level, continuity
of the flux from one element to its neighbors one and mesh flexibility.
Moreover, the method solves simultaneously the state variable and its
gradient with the same order of accuracy (Babuska et al. [3], Brezzi &
Fortin [4], Girault & Raviart [5] and Raviart & Thomas [6]). Therefore,
MFE has received a growing attention and some numerical experiments
showed the superiority of the mixed finite element method with regard to
the other classic methods (Darlow et al. [7], Durlofsky [8], Kaaschieter
[9] and Mosé et al. [10]).

However, its implementation leads to a system matrix with signifi-
cantly more unknowns than FV and FE methods. When the lowest-order
Raviart-Thomas space [6, 11] is used, which is very often the case, the
resolution of (1.1) and (1.2) leads to a system with one scalar unknown
per edge for the hybrid formulation of the MFE [6, 11].

Attempts to reduce the number of unknowns have been investigated
by various authors. For rectangular meshes, mixed finite elements of low-
est order reduce to the standard cell-centered finite volume method [11]
provided that numerical integration is used. Baranger et al. [12] pro-
vides similar results for triangles and Cordes & Kinzelbach [13] showed
the equivalence between mixed finite element and finite volumes with-
out any numerical integration. However, such equivalence is restricted to
steady state and without sink /source terms inside the domain. Moreover,
the mixed finite element method does not require a Delaunay triangula-
tion [9] unlike a finite volume scheme.

We present here an alternative formulation of the MFE which leads
to a system matrix with only one unknown per element without any
approximation. In the first part, the steady state formulation is derived
in details for the MFE, FV and the alternative formulation. In the
second part, the main results concerning the general formulation for the
elliptic PDE (steady state) will be described. The detailed developments
can be found in Younes et al. (14, 15] and Chavent et al. [16]. The last
part is dedicated to the parabolic PDE.

2 Resolution of the elliptic case with a scalar
flux related parameter

Assuming that the system is in equilibrium, the storage term in (1.1)
vanishes. The system of equations (1.1) and (1.2) leads to an elliptic
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partial differential equation. The finite volume formulation of yields,
3
Z Qi =Qs (2'1)
i=1

2.1 The mixed finite element formulation

In the lowest-order MFE formulation for triangular elements, the flux
is approximated with vector basis functions that are piecewise linear
along both coordinate directions. In any point inside element A4, g4
approximated by (e.g. [9]):

3
=) wiet (22)
i=1
where ; are the fluxes across the element edges A; taken positive out-

wards and w;(L~!) are the three vectorial basis functions for the element
A (Figure 2.1) defined by:

1if§=j
/wi-n;‘—_— o (2.3)
A, 0ifi4# 3
For a triangular element, the vectorial basis function is given by:
1 (z—u=
A i
4 __ 24
VY (y—yi) @4)

where (z;, y;) are the coordinates of the vertices of A and |4| is its area.
In addition, they satisfy

and, on the edge A;,
1 :ps .
pA_{Enifi=g
w; nJ' {0 if 4 # j (2.6)

where |A;| is the length of the edge A;.
Using properties (2.5) and (2.6) of the vectorial basis functions, the

flux’s law (1.2) is written in a variational form

[ tah)-wi=- [(0)w
A A
3 . 1
— s — R, S I
_/uV w; Z/uw, n; A lAiI/u (2.7)
A =14, A;
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Figure 2.1 Vectorial basis function and related flux.

which can be written as

3
> BLQf =ut —uf (2.8)
i=1

1
with BA = — [w? - wA,u4 is the average value of the state variable
U KAy J

over A and u is the average value of the state variable on element edge
A;. K4 is a scalar and represents the average value of K on element A.

We define r;; as the edge vector from node i toward node j and L;;
as its length (Li; = ||ry||). As shown by Cordes & Kinzelbach [13],

1
applying the scalar product r;;ri; = i(L’?j + L% — L?,) leads to the
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following relation:
3
Y Bf =} +rd +ri) /48K Al = L (2.9)

The previous properties of the discretized flux law is used to build a
system of equations with average edge value as unknown. The system
of equations (2.8) gives

3 3
LY Qi=3u =) u (2.10)
i=1 i=1

Equation (2.10) is inserted in (2.1), which leads to:

(Z uf + LQS) (2.11)

i=1

wlv-d

System (2.8) is inverted and u is replaced by the previous formulation
(2.11),
KA QA

QA =- Al r,k['r,ku 'rk,u + 7riu ]+ (2.12)

Using the continuity of the fluxes between two adJa.cent elements A and
say B (Figure 2.2)
QA+QE=0 (2.13)

leads then to the equation:

KA QA
[ T r]k[rjku + rk,u + r,,u ]
KB B
[ 18] Tielreul + r;uu + r.juk] + Q——] =0 (2.14)

For continuity reasons, we have
uf = uf (2.15)
This equation is written for each edge of the mesh which is not a Dirichlet

type boundary. If a Neuman boundary conditions is applied on edge ¢,
(2.14) becomes:

KA
[ |A]

Equation (2.14) is the discretized form of equations (1.1) and (1.2) using
the mixed finite element method in its hybrid form.

rilraeu + riuf + rigug] + +Qn =0 (2.16)

QA}
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8P

Figure 2.2 Triangular element A and its three neighbors.

2.2 The finite volume formulation

The main idea of the finite volume formulation consists in defining the
flux by

L.
QA = —KA®uf - u,-)L—i‘ (2.17)

where u8 is the value of the state variable at the circumcenter of 4, L 4,
is the length of the edge ¢, and Lé-., is the distance from edge 7 to the
circumcenter of the element A (Figure 2.3).

Writing flux and variable continuity at the common edge of element
A and one of its neighbors noted B yields

L& 4  LE g
u; = EAUC T FBUC (2.18)
T LA LB °
—71' + %7

and therefore,

L LB - A B A_,B
Qi = L, KA (ug —uc) = Kap(ué —ug) (2.19)

where K 4 is the harmonic mean of the flux related parameter multiplied
by the length of the edge and is called the stiffness coefficient.
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x;. ¥)

Figure 2.3 A triangular finite volume and its neighbor.

The finite volume discretization of equations (2.1) and (2.2) is ob-
tained by plugging {2.19) into (2.1):

KAB(ué - ug) + KAc(ué - ug) + KAD(’ué - ug) = Qs (2.20)

This equation is written for each element. The finite volume requires
significantly less unknowns than the mixed formulation (one per element
against one per edge) and leads to a more sparse system matrix (4 non
zero values per line against 5).

2.3 'The re-formulation of the mixed finite element

The main idea of the reformulation is first to define a linear interpolate
of the state variable by,

3
Ut =3 nful (2.21)
i=1

where U is the value of the state variable somewhere (in or outside the
element A, not necessarily the average value over the element or the
value at the circumecenter of the element), and second, fo use a very
generie finite volume formulation of the flux,

Qf = U4 ~uf) +f (222)
Building an equation with unknowns U is then straightforward. The

continuity of the fluxes between two adjacent elements and of the state
variable on the common edge yields:

QF+QF =0
(2.23)
ufl =uf
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and therefore
_PUALEPUB A AP

w = + 2.24
T gre Tare 224
Equation (2.24) is plugged in equation (2.22) which leads to
A¢B BoA _ ¢ANB
A i &i A B i Vi % Vi
A UA-—yUB)+ 2t TS 2.25
Wi U e (225)

Equation (2.25) is then plugged in the discretized mass balance equa-
tion, which leads to an equation with one unknown per element, if, of
course, the values of 7, £ and 4! can be determined.

Replacing (2.21) in (2.22) and comparing with (2.12) allows the iden-
tification of these coefficients,

A _4K*A| _ oA _ poALag

& = — e = cob(dd) =K ——z—‘-L:i (2.26)
A

v =

and the discretized form of (1.1) and (1.2) is then

AgC

&+eP &+ & +ed
_oA_ [ G -G N -G ] (2.27)
’ gh+eP gh+ee e

A¢B
Note that %1? = K ap and therefore, the system equation (2.27)

of the mixed reformulation differs from the system equation of the fi-
nite volume formulation (equation (2.20)) only by the sink/source term.
Without sink/source terms, both formulations are identical. Moreover,
the variable U is then the state variable at the circumcenter since, from
equations (2.26) and (2.21):

U (rierir ) (PigTii Jui + (Tij i) (P )u;

_ 1y
T 4]AP2
+("'ij"'ik)(7'ij"'lcj)uk] = Ué (2.28)

With sink/source terms, both formulations are different, except for
equilateral triangles and homogeneous domain. Moreover, in that case,
the velocity derived from the MFE approach varies linearly and therefore,
the linear interpolation of the state variable is no more valid.
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3 General 2D formulation for the elliptic
case

We treat here the case where K is a full tensor. With the FV method, the
computation of accurate fluxes with a full parameter tensor is a difficult
issue, especially for discontinuous coeflicient. For these methods, recent
developments have been done to improve the flux computation by using
locally additional constraints on the continuity of the state variable and
fluxes [17—20].

With MFE method, the case of full parameter tensor is treated in
an elegant way leading to a system with as many unknowns as the total
number of edges. Reduction of the number of unknowns can be obtained
for rectangular meshes when using appropriate quadrature rules with a
variant of the MFE method, the “expanded mixed method” [21,22].
For general geometry, enhanced cell-centered finite difference method
was obtained from a quadrature approximation of the expanded mixed
method [23]. This method is improved by adding Lagrange multiplier
for non smooth meshes or abrupt changes in K [23].

The parameter tensor K is generally symmetric [24]. It commonly
arises from a rotation of the locally diagonal tensor from its principal axes
with respect to the computational grid and is therefore always symmetric

and positive definite.
K4 is defined by
k3 kg
K4 = (kA A ) (3.1)

Ty Y

The principal components of K4 are constant and positive over each
element A, therefore

det(K4) = k2k;' — (k2)2 >0 (3.2)

3.1 The mixed finite element formulation

We define now l;; by li; = v (K#)~'r;; where (K#)™! is the parameter
tensor defined over element A. The variational form of equation (1.2)
leads now to:

J ((KA)"lqA) cwh = —/Vu cwi
A a

3
=/uV-w§4-—Z/uwf-n34 (3.3)

A =14,



10 P. Ackerer, A. Younes

Written in a matrix form yields

3

S BAQA =ut—uf with Bj-= / wAT(KA) " wf  (3.4)
Jj=1 A

The matrix B is given by

1
B= —
434]
3lia+3liz—las  —3liza+haz+las lio— 33+l
—3lia+3li34 los 3lya —l13+3lxs lLig+ s — 3la3 (3.5)

lio — 3liz + lo3 lig+1li3—3las  —lig +3hs+ 323
with

3
1
§ A _ _TA

where LA can be seen as the inverse of the parameter tensor scaled by
the shape of the element. Therefore, we obtain the same equations than

and (2.11), i.e.

3 3 3
1
LAY Qi=%"-) uf and u= 3 (2 uf +LAQ3) (3.7
i=1 i=1

=1
The system (3.4) is inverted and (3.7) is used to obtain:

A _det(K)A

[rh (K4 'rjpuf
T Aol A L T (peA\—L. Al L @f
+ rh (K ik + v (K7) rijup| + = (3.8)

The final system of equations is obtained using continuity properties of
the flux and state variable, which yields

(3.9)

A_ B __ .
U = Uy = U

{Q{‘+Q?
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and therefore, the discretized equation of system (1.1) and (1.2) is

det(K4)

|Al [’r;'[l‘i:('l.(‘A)_]."..:f"iu';"1

+ 'r]q-;c(KA)'lrkiuj1 + r};c(KA)_lrijuf]

det(KP) -+ - g1 B
+ r};c(KB)—lrkiuf + r};c(KB)_lrijuf]
Q@ Ql
=73 773

(3.10)

This equation is slightly modified when the edge belongs to the do-
main boundary.

3.2 The corresponding re-formulation

The same development as for the case of a scalar parameter K is used
(see equations (2.21) and (2.22)). The coefficients !, £ and YA are

A — det KA [r;fl’;(KA)—lrjk] [r%j(KA)—lrkj]

i 4|A
444
eA = _WH‘T?I (3.11)
QA

’7’1 =72 —73 =3

Replacing this last relation in the balance equation for an element
A surrounded by three elements B, C and D (Figure 2.2) leads to the
equation

5:4513 (UA _ UB)

¢ +e0
e a4 o gfe A 1D
Uus-uU Uus-Uu
+§J +§JC( It &+ D( )
o [P AP P - | &P -8R
=9 [ EATeP T eATEC 1 eAveD ]

(3.12)



