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position vector

ith component of z in a cartesian orthonormal
frame

complex number associated with the position
vector

Airy’s stress function at point 2

: complex potentials related to U(z) by [1.17]

Papkovitch—Neuber (real) potentials
conformal map

stress tensor at point z

strain tensor at point z

displacement vector at point z
second-order Green’s tensor for an infinite
elastic (2D or 3D) continuum
fourth-order stiffness tensor

solid stiffness tensor

solid compliance tensor

macroscopic (homogenized or effective)
stiffness tensor
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Poisson ratio

Young’s modulus

elastic bulk modulus of the solid phase
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Poisson ratio of the solid phase

Young’s modulus of the solid phase
second-order unit tensor

symmetric fourth-order unit tensor
fourth-order spherical projector
fourth-order deviatoric projector (I = J + K)
Kernel of the Green operator (infinite space)

: Kernel of the Green operator (finite domain)

Green operator

macroscopic Cauchy stress tensor
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Heaviside function

Fourier sine transform

Fourier cosine transform

Hankel transform

stress intensity factor (mode I)
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energy release rate

fracture energy

crack density parameter
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Preface

And it shall come to pass, while my glory passeth by,
that I will put thee in a clift of the rock,
and will cover thee with my hand while I pass by.

Exodus 33:22

An examination of the literature devoted to cracked media
reveals that there are two main options for the geometrical
modeling of cracks:

—the first option [GRI 21] consists of the idealized
representation of the crack as two parallel faces (segments
in plane strain/stress conditions or plane surfaces in three
dimensions [3D]). The usual approach consists of adopting
stress free boundary conditions on the crack faces. The
two faces asymptotically coincide in this mathematical
idealization and the displacement undergoes a discontinuity
across the crack line (respectively, surface). Indeed, the
displacement vectors of two material points located on each
face at the same geometrical point in the initial configuration
can differ from one another. Clearly, the discontinuity of the
displacement field is a consequence of the idealization of the
crack as a geometrical entity having a measure equal to zero
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in the integral sense. For the same reason, the stresses at a
crack tip are singular, which has led to the introduction of
the well-known concept of stress intensity factors. This first
model is referred to throughout the book as the Griffith crack
model. It will be presented in two-dimensional conditions
(plane strain/stress), as well as in 3D conditions;

—as a second option, the crack is represented as a
flat cavity. For instance, it will be a flat ellipse in plane
strain/stress conditions, or a flat spheroid (or ellipsoid) in 3D,
characterized by an infinitesimal aspect ratio. Consequently,
the mathematical measure (in the integral sense) of the crack
is infinitesimal but non-zero. This point of view represents the
cracked medium as a heterogeneous material and the crack
itself as an inhomogeneity in the sense of the homogenization
theory. This geometrical description will therefore be referred
to as the inhomogeneity model. As long as the aspect ratio
has a small but non-zero value, the latter model warrants the
ability to define a continuous extension of the displacement
field in the crack cavity, as done classically in micromechanics
of porous media. It also avoids the occurrence of stress
singularities.

The very existence of two geometrical models for the same
physical entity raises the question of their consistency. As
pointed out above, one model induces mathematical
singularities while the other model preserves the continuity
of the displacement field and the absence of stress
singularity, provided that the aspect ratio remains
infinitesimal but non-zero. This of course might erroneously
suggest that the two models are not compatible. In fact, the
consistency must be examined in an asymptotic sense, when
the crack aspect ratio tends to 0. It will be shown that the two
models yield perfectly consistent estimates in terms of
effective elastic properties. A thorough comparison of the
local stress, strain and displacement fields is also proposed.
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The book is organized as follows:

— Chapter 1 presents some mathematical tools of the
theory of linear elasticity, which will be useful in forthcoming
developments. Beginning with plane elasticity, the method
of the Airy function is recalled. Biharmonic stress functions
can be generated in a systematic way by means of the
complex potential approach, which is also briefly presented.
The method of the Airy function will be implemented in the
framework of each of the two geometrical models;

—in view of application to the inhomogeneity model,
Chapter 2 first introduces the Green’s function. This paves
the way for a presentation of the so-called inclusion and
inhomogeneity Eshelby problems. Indeed, the solutions of
the latter requires the determination of the Hill tensor,
which is defined from the derivatives of the Green’s function.
Eshelby’s inclusion problem is a first step toward the concept
of polarization. This motivates the introduction of the Green
operator. These tools will be essential for the derivation
of variational bounds on the effective elastic properties of
microcracked media;

— Chapter 3 deals with the Griffith crack model in two-
dimensional conditions. To begin with, the stress singularity
at the crack tip and the stress intensity factors are introduced.
Then, the complete solutions to mode I and mode II loadings
are derived, based on the use of a displacement potential
technique (Papkovitch-Neuber potential), which is directly
presented in the context of its implementation to crack
problems. This yields the corresponding stress intensity
factors. Similarly, Chapter 5 deals with the Griffith crack
model in 3D conditions. Again the complete 3D solutions in
mode [ and in shear mode are derived;

— Chapter 4 is devoted to the inhomogeneity model of crack
in two-dimensional conditions. The cross-section of the crack
is assumed to be a flat ellipse. Two different mathematical
techniques are implemented, namely the complex potential
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approach of the Airy stress function and the solution to the
Eshelby inhomogeneity problem. The same Eshelby-based
technique is used in Chapter 6 in order to deal with 3D flat

spheroidal cracks;

— Chapter 7 introduces the concept of energy release rate
and presents the classical thermodynamic reasoning leading
to the related criterion for crack propagation;

—the second part of the book is devoted to the effective
properties of microcracked media and to damage modeling.
It opens with Chapter 8, which proposes a brief introduction
to the homogenization of heterogeneous elastic media. The
two geometrical models for microcracks (Griffith crack and
inhomogeneity model) are successively considered. These two
routes are explored in Chapter 9 (Griffith crack) and in
Chapters 10 and 11 (inhomogeneity model);

— Chapter 12 is devoted to the variational approach
to effective properties. It first presents the energy-based
definition of the effective stiffness. Then, the Hashin—
Shtrikman—Willis  variational approach is detailed.
The discussion emphasizes the respective roles of the
inhomogeneity shape (flat spheroid in the present case) and
of the crack spatial distribution;

— eventually, a micromechanics-based damage constitutive
law can be formulated and this is the aim of Chapter 13, which
serves as a conclusion to this book. Uniqueness and stability
issues concerning the damage model will be discussed.

Rock of Ages, cleft for me,
Let me hide myself in Thee.

Luc DORMIEUX
Djimédo KONDO
February 2016
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