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Preface to the First Edition

This textbook covers the basic properties of elliptic curves and modular
forms, with emphasis on certain connections with number theory. The ancient
*‘congruent number problem” is the central motivating example for most of
the book.

My purpose is to make the subject accessible to those who find it hard to
read more advanced or more algebraically oriented treatments. At the same
time I want to introduce topics which are at the forefront of current research.
Down-to-earth examples are given in the text and exercises, with the aim of
making the material readable and interesting to mathematicians in fields far
removed from the subject of the book. ’

With numerous exercises (and answers) included, the textbook is also
intended for graduate students who have completed the standard first-year
courses in real and complex analysis and algebra. Such students would learn
applications of techniques from those courses, thereby solidifying their under-
standing of some basic tools used throughout mathematics. Graduate stu-
dents wanting to work in number theory or algebraic geometry would get a
motivational, example-oriented introduction. In addition, advanced under-
graduates could use the book for independent study projects, senior theses,
and seminar work.

This book grew out of lecture notes for a course I gave at the University of
Washington in 1981-1982, and from a series of lectures at the Hanoi
Mathematical Institute in April, 1983. I would like to thank the auditors of
both courses for their interest and suggestions. My special gratitude is due to
Gary Nelson for his thorough reading of the manuscript and his detailed
comments and corrections. I would also like to thank Professors J. Buhler, B.

Mazur, B. H. Gross, and Huynh Mui for their interest, advice and
encouragement.



vi Preface to the First Edition

The frontispiece was drawn by Professor A. T. Fomenko of Moscow State
University to illustrate the theme of this book. It depicts the family of elliptic
curves (tori) that arises in the congruent number problem. The elliptic curve
corresponding to a natural number » has branch points at 0, co,nand —n. In
the drawing we see how the elliptic curves interlock and deform as the branch
points +n go to infinity.

Note: References are given in the form [Author year]; in case of multiple

works by the same author in the same year, we use a, b, ... after the date t
indicate the order in which they are listed in the Bibliography.

Seattle, Washington NEeaL KosLiTZ



Preface to the Second Edition

The decade since the appearance of the first edition has seen some major
progress in the resolution of outstanding theoretical questions concerning
elliptic curves. The most dramatic of these developments have been in the
direction of proving the Birch and Swinnerton-Dyer conjecture. Thus, one
of the changes in the second edition is to update the bibliography and the
discussions of the current state of knowledge of elliptic curves.

It was also during the 1980s that, for the first time, several important
practical applications were found for elliptic curves. In the first place, the
algebraic geometry of elliptic curves (and other algebraic curves, especially
the curves that parametrize modular forms) were found to provide a source
of new error-correcting codes which sometimes are better in certain respects
than all previously known ones (see [van Lint 1988]). In the second place,
H.W. Lenstra’s unexpected discovery of an improved method of factoring
integers based on elliptic curves over finite fields (see [Lenstra 1987]) led to a
sudden interest in elliptic curves among researchers in cryptography. Further
cryptographic applications arose as the groups of elliptic curves were used as
the “site” of so-called “public key” encryption and key exchange schemes (see
[Koblitz 1987], [Miller 1986], [Menezes and Vanstone 1990]).

Thus, to a much greater extent than [ would have expected when I wrote this
book, readers of the first edition came from applied areas of the mathematical
sciences as well as the more traditional fields for the study of elliptic curves,
such as algebraic geometry and algebraic number theory.

I would like to thank the many readers who suggested corrections and
improvements that have been incorporated into the second edition.
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CHAPTER 1

From Congruent Numbers to Elliptic
Curves

The theory of elliptic curves and modular forms is one subject where the
most diverse branches of mathematics come together: complex analysis,
algebraic geometry, representation theory, number theory. While our point
of view will be number theoretic, we shall find ourselves using the type of
techniques that one learns in basic courses in complex variables, real var-
iables, and algebra. A well-known feature of number theory is the abundance
of conjectures and theorems whose statements are accessible to high school
students but whose proofs either are unknown or, in some cases, are the
culmination of decades of research using some of the most powerful tools
of twentieth century mathematics.

We shall motivate our choice of topics by one such theorem: an elegant
characterization of so-called “congruent numbers” that was proved by J.
Tunnell [Tunnell 1983]. A few of the proofs of necessary results go beyond
our scope, but many of the ingredients in the proof of Tunnell’s theorem will
be developed in complete detail.

Tunnell's theorem gives an almost complete answer to an ancient problem:
find a simple test to determine whether or not a given integer n is the area
of some right triangle all of whose sides are rational numbers. A natural
number 7 is called “congruent™ if there exists a right triangle with all three
sides rational and area n. For example, 6 is the area of the 3—4-5 right
triangle, and so is a congruent number.

Right triangles whose sides are integers X, Y, Z (a “‘Pythagorean triple”)
were studied in ancient Greece by Pythagoras, Euclid, Diophantus, and
others. Their central discovery was that there is an easy way to generate all
such triangles. Namely, take any two positive integers a and b with a > b,
draw the line in the uv-plane through the point (-1, 0) with slope b/a. Let
(u, v) be the second point of intersection of this line with the unit circle
(see Fig. L.1). It is not hard to show that
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Figure L.1

_at—b? »— _2ab
T at + b’ T a4 b

Then the integers X = a? — b2, Y = 2ab, Z = a®> + b? are the sides of a
right triangle; the fact that X2 4+ Y2 = Z2 follows because u? + v2 = 1. By
letting a and b range through all positive integers with a > b, one gets all
possible Pythagorean triples (see Problem 1 below).

Although the problem of studying numbers n which occur as areas of
rational right triangles was of interest to the Greeks in special cases, it
seems that the congruent number problem was first discussed systematically
by Arab scholars of the tenth century. (For a detailed history of the problem
of determining which numbers are “‘congruent”, see [L. E. Dickson 1952,
Ch. XVI]; see also [Guy 1981, Section D27].) The Arab investigators
preferred to rephrase the problem in the following equivalent form: given n,
can one find a rational number x such that x* + n and x2 — n are both
squares of rational numbers? (The equivalence of these two forms of the
congruent number problem was known to the Greeks and to the Arabs; for
a proof of this elementary fact, see Proposition 1 below.)

Since that time, some well-known mathematicians have devoted consid-
erable energy to special cases of the congruent number problem. For
example, Euler was the first to show that n =7 is a congruent number.
Fermat showed that n =1 is not;- this result is essentially equivalent to
Fermat’s Last Theorem for the exponent 4 (i.e., the fact that X* + Y* = Z*
has no nontrivial integer solutions).

It eventually became known that the numbers 1, 2, 3, 4 are not congruent
numbers, but 5, 6, 7 are. However, it looked hopeless to find a straight-
forward criterion to tell whether or not a given n is congruent. A major
advance in the twentieth century was to place this problem in the context of
the arithmetic theory of elliptic curves. It was in this context that Tunnell
was able to prove his remarkable theorem.

u
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Here is part of what Tunnell’s theorem says (the full statement will be
given later):

Theorem (Tunnell). Let n be an odd squarefree natural number. Consider the
two conditions :

(A) n is congruent;
(B) the number of triples of integers (x, y, z) satisfying 2x* + y*> +8z* =n
is equal to twice the number of triples satisfying 2x* + y* + 32z*> = n.

Then (A) implies (B), and, if a weak form of the so-called Birch—Swinnerton-
Dyer conjecture is true, then (B) also implies (A).

The central concepts in the proof of Tunnell’s theorem—the Hasse-Weil
L-function of an elliptic curve, the Birch—Swinnerton-Dyer conjecture,
modular forms of half integer weight—will be discussed in later chapters.
Our concern in this chapter will be to establish the connection between
congruent numbers and a certain family of elliptic curves, in the process
giving the definition and some basic properties of elliptic curves.

§1. Congruent numbers

Let us first make a more general definition of a congruent number. A
positive rational number re @ is called a “congruent number” if it is the
area of some right triangle with rational sides. Suppose r is congruent, and
X, Y, ZeQ are the sides of a triangle with area r. For any nonzero re Q we
can find some se Q@ such that s*r is a squarefree integer. But the triangle
with sides sX, sY, sZ has area s2r. Thus, without loss of generality we may
assume that r = n is a squarefree natural number. Expressed in group
language, we can say that whether or not a number r in the multiplicative
group Q" of positive rational numbers has the congruent property depends
only on its coset modulo the subgroup (Q*)* consisting of the squares of
rational numbers; and each coset in @* /(Q@*)? contains a unique squarefree
natural number r = n. In what follows, when speaking of congruent numbers,
we shall always assume that the number is a squarefree positive integer.

Notice that the definition of a congruent number does not require the
sides of the triangle to be integral, only rational. While n = 6 is the smallest
possible area of a right triangle with integer sides, one can find right triangles
with rational sides having area n = 5. The right triangle with sides 14, 63, 62
is such a triangle (see Fig. 1.2). It turns out that n = 5is the smallest congruent
number (recall that we are using “‘congruent number” to mean ‘“‘congruent
squarefree natural number™).

There is a simple algorithm using Pythagorean triples (see the problems
below) that will eventually list all congruent numbers. Unfortunately, given
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63

Figure 1.2

n, one cannot tell how long one must wait to get » if it is congruent; thus,
if n has not appeared we do not know whether this means that » is not a
congruent number or that we have simply not waited long enough. From a
practical point of view, the beauty of Tunnell’s theorem is that his condition
(B) can be easily and rapidly verified by an effective algorithm. Thus, his
theorem almost settles the congruent number problem, i.e., the problem of
finding a verifiable criterion for whether a given » is congruent. We must
say “‘almost settles” because in one direction the criterion is only known to
work in all cases if one assumes a conjecture about elliptic curves.

Now suppose that X, Y, Z are the sides of a right triangle with area n.
This means: X? + Y2 =Z2 and {XY = n. Thus, algebraically speaking,
the condition that n be a congruent number says that these two equations
have a simultaneous solution X, Y, Ze Q. In the proposition that follows,
we derive an alternate condition for n to be a congruent number. In listing
triangles with sides X, Y, Z, we shall not want tolist X, ¥, Zand Y, X, Z
separately. So for now let us fix the ordering by requiring that X < Y < Z
(Z is the hypotenuse).

Proposition 1. Let n be a fixed squarefree positive integer. Let X, Y, Z, x always
denote positive rational numbers, with X < Y < Z. There is a one-to-one
correspondence between right triangles with legs X and Y, hypotenuse Z, and
area n; and numbers x for which x, x + n, and x — n are each the square of a
rational number. The correspondence is:

X, Y, Z->x=(Z]2)?

x=X=\x+n—Jx—n Y=x+n+ x—n Z=2/x

In particular, n is a congruent number if and only if there exists x such that x,
x + n, and x — n are squares of rational numbers.

PROOF. First suppose that X, Y, Z is a triple with the desired prdperties:
X2+ Y?*=Z?*4iXY = n. If we add or subtract four times the second equa-
tion from the first, we obtain: (X + Y)? = Z?2 + 4n. If we then divide both
sides by four, we see that x = (Z/2)? has the property that the numbers
x % n are the squares of (X + Y)/2. Conversely, given x with the desired
properties, it is easy to see that the three positive rational numbers X < ¥ < Z
given by the formulas in the proposition satisfy: XY = 2n, and X2 + Y? =
4x = Z*. Finally, to establish the one-to-one correspondence, it only remains
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to verify that no two distinct triples X, Y, Z can lead to the same x. We leave
this to the reader (see the problems below). o}

PROBLEMS

I. Recall that a Pythagorean triple is a solution (X, Y, Z) in positive integers to the
equation X2 4 Y2 = Z?2 Itis called *“primitive” if X, Y, Z have no common factor.
Suppose that a > b are two relatively prime positive integers, not both odd. Show
that X = a®> — b%, Y = 2ab, Z = a* + b* form a primitive Pythagorean triple, and
that all primitive Pythagorean triples are obtained in this way.

2. Use Problem 1 to write a flowchart for an algorithm that lists all squarefree con-
gruent numbers (of course, not in increasing order). List the first twelve distinct
congruent numbers your algorithm gives. Note that there is no way of knowing
when a given congruent number n will appear in the list. For example, 101 is a
congruent number, but the first Pythagorean triple which leads to an area s 101
involves twenty-two-digit numbers (see [Guy 1981, p. 106]). One hundred fifty-seven
is even worse (see Fig. 1.3). One cannot use this algorithm to establish that some n
is not a congruent number. Technically, it is not a real algorithm, only a “semi-
algorithm™.

3. (a) Show that if | were a congruent number, then the equation x* — y* = u? would
have an integer solution with ¥ odd.
(b) Prove that 1 is not a congruent number. (Note: A consequence is Fermat’s
Last Theorem for the exponent 4.)

4. Finish the proof of Proposition 1 by showing that no two triples X, Y, Z can lead
to the same x.

S. (8) Find xe(Q%)? such that x + 5e(Q*)%
(b) Find xe(Q*)? such that x + 6e(Q*)%.

224403517704336969924557513090674863160948472041
891233226892885958802553517896716357001 6480830

6803298487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

Figure 1.3. The Simplest Rational Right Triangle with Area 157 (computed by D.
Zagier).
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(c) Find two values xe(Q")? such that x + 210e(Q*)2. At the end of this chapter
we shall prove that if there is one such x, then there are infinitely many. Equiva-
lently (by Proposition 1), if there exists one right triangle with rational sides
and area n, then there exist infinitely many.

6. (a) Show that condition (B) in Tunnell's theorem is equivalent to the condition that
the number of ways n can be written in the form 2x? + y2 + 822 with x, y, z
integers and z odd, be equal to the number of ways n can be written in this form
with z even.

(b) Write a flowchart for an algorithm that tests condition (B) in Tunnell’s theorem
for a given n.

7. (a) Prove that condition (B) in Tunnell’s theorem always holds if n is congruent
to 5 or 7 modulo 8.

(b) Check condition (B) for all squarefree n = 1 or 3 (mod 8) until you find such
an n for which condition (B) holds.

(c) By Tunnell’s theorem, the number you found in part (b) should be the smallest
congruent number congruent to 1 or 3 modulo 8. Use the algorithm in Problem 2

to find a right triangle with rational sides and area equal to the number you
found in part (b).

§2. A certain cubic equation

In this section we find yet another equivalent characterization of congruent
numbers.

In the proof of Proposition 1 in the last section, we arrived at the equations
((X £+ Y)/2)? = (Z/2)? + n whenever X, Y, Z are the sides of a triangle with
area n. If we multiply together these two equations, we obtain (X2 — Y?2)/4)?
= (Z/2)* — n?. This shows that the equation u* — n? = p? has a rational
solution, namely, ¥ = Z/2 and v = (X2 — Y?%)/4. We next multiply through
by u? to obtain u® — n?u? = (uv)2. If we set x = u? = (Z/2)? (this is the same
x as in Proposition 1) and further set y = uv = (X? — Y?)Z/8, then we have
a pair of rational numbers (x, y) satisfying the cubic equation:

y* = x3 — n*x.

Thus, given a right triangle with rational sides X, Y, Z and area n, we
obtain a point (x, y) in the xy-plane having rational coordinates and lying
on the curve y% = x* — n®x. Conversely, can we say that any point (x, )
with x, y € Q which lies on the cubic curve must necessarily come from such
a right triangle? Obviously not, because in the first place the x-coordinate
x = u? = (Z/2)? must lie in (Q*)? if the point (x, y) can be obtained as in
the last paragraph. In the second place, we can see that the x-coordinate of
such a point must have its denominator divisible by 2. To see this, notice that
the triangle X, Y, Z can be obtained starting with a primitive Pythagorean
triple X', Y’, Z’ corresponding to a right triangle with integral sides X*, Y, Z’
and area s%n, and then dividing the sides by s to get X, Y, Z. But in a primitive



