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CHAPTER _

Background

1.0 INTRODUCTION

In this chapter we give a simplified descriptibn of a power system. The system con-

sists of power sources, called generating plants (or generators), power end users, called
loads, and a transmission and distribution network that connects them. Most com-

monly the generating plants convert energy from fossil or nuclear fuels, or from falling
water, into electrical energy. |

1.1 ELECTRIC ENERGY

Electricity is only one of many forms of energy used in industry, homes, businesses, and
transportation. It has many desirable features;it is clean (particularly at the point of
use), convenient, relatively easy to transfer from point of source to point of use, and
highly flexible in its use. In some cases it is an irreplaceable source of energy.

Figure 1.1 is a useful summary of electric energy sources and their transition to
end uses for the United States in 1996. The basic energy sources are shown on the
left. The end uses of the electricity are shown on the right. Only about one-third of
the resource energy is converted into electricity; about two-thirds is lost as “waste
heat.” In some cases this heat is not wasted. It can be used for heatmg homes and
offices or for some industrial processes. |

In Figure 1.1, the T & D losses are transmission and distribution losses (almost
10% of the net generation of electricity). Also, note the mgmﬁcant amount of non-
utility energy generated in 1996. Changes in government energy policy have en-
couraged this growth. In the period from 1990 to 1995, nonutility power generation
grew by 47%.

Figure 1.2 provides more detail regarding the major sources of utility-
generated electrical energy and some trends in their relative importance. It can be
seen that most of the production has been in conventional steam plants. Conven-
tional steam refers to steam generation by burning coal, petroleum, or gas. In 1996

- approximately 3000 billion kilowatthours of electricity were produced. Of this, coal
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Figure 1.1 U.S. electricity supply and demand. {From Annua/ Energy
Heview 1996, U.S. Department of Energy.)

accounted for approximately 56 %, petroleum 2%, natural gas 8% (tdtaling 66% for
conventional steam), hydropower 11 %, nuclear power 22%, and others, including gas
turbines, about 2%. Note that nuclear and geothermal power plants also generate

steam but not by burning fossil fuels. |
The units used in Figure 1.1 are quadrillion Btu (10", or quads), while those in

Figure 1.2 are in billion kilowatthours (or 10° watthours or gigawatthours). In at-
tempting to align the figures, we can use the conversion factor 1 watt = 3.413 Btu/hr.

Turning to the growth in utility electricity production, we see in Figure 1.2 an
almost exponential growth rate until about 1973. Until that time electricity use dou-
bled every 10 years or so. Subsequently, the growth rate dropped, at first reflecting
the general slowdown of worldwide economic growth precipitated in large part by the
oil crisis of 1973 and later by an Increasing awareness of the cost-effectiveness of en-
ergy conservation. '

Figure 1.3 shows the growth in installed utility-generating capability in the Unit-
ed States. In 1996, of the total installed generating capability of approximately 710
million kilowatts, some 63% was conventional (fossil fuel) steam, 14% was hy-
dropower, 14% was nuclear, 8% was gas turbine, and others totaled about 1%. Com-
paring these with the production figures given earlier, we see great differences in the
utilization rates of the various sources. Nuclear power has the highest rate. Gas
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Bllion kilowatthours Bllion kilowatthours
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Figure 1.2 Electric utility energy production [Un'rted Ctates). (From
Annual Energy Review 1996, U.S. Department of Energy.)

~ turbines and internal combustion eng'ines"a‘re émong the lowest in the rate of uti-

lization. We will discuss the reasons in a moment.

First, it is interesting to calculate an overall utilization factor for 1996. Sup-
pose that it had been possible to utilize the 710 million kilowatt capability full time.
Then the plants would have produced 710 X 10° x 8760 = 6220 X 10" watthours
in 1996. They actually produced 3078 X 10'2 watthours. Thus the annual capabili-
ty factor or load factor was 3078/6220 = 0.49 or 49%. Why isn’t the figure higher?

There are two main reasons. The first is that generating units are not always
available for service. There 1s downtime because of maintenance and other sched-
uled outages; there are also forced cutages because of equipment failures. The avail-
ability of fossil-fuel steam turbine units ranges from about 80% to about 92%.

The second reason involves a characteristic of the load. While there must be
enough generating capability available to meet the requirements of the peak-load
demand, the load is variable, with daily, weekly, and seasonal variations, and thus has

a lower average value. The daily variations are roughly cyclic with a minimum value
(the base load) typically less than one-half of the peak value. A typical daily load
curve for a utility is shown in Figure 1.4. The (weekly) capability factor for this par-
ticular utility js seen to be approximately 65%.
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Figure 1.3 Electric utility generating capability in the United States in the
summer. (From Annual Energy Review, 1996, U.S. Department of Energy.)

In meeting the varying load requirements, economic considerations make it de-
sirable to utilize plants fully with low (incremental) fuel costs while avoiding the use
of plants with high fuel costs. This, in part, explains the use of nuclear plants for base-
load service and gas turbines for peaking-power service; the different rates of uti-
lization of these sources were noted earlier.

Finally, it is interesting to reduce the enormous numbers describing produc-
tion and generating capability to human terms. In 1996 the U.S. population was

40 I ﬁ-ase I-c-:;ad B B

System load (% of capability)
1))
=)
g

0! I ? Figure 1.4 Daily load output
Mon, Tues. Wed, Thur. :Fri. Sat. Sun. [typical week). |
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approximately 265 million. Thus, there was a generating capability of approximate-
ly 710/265 = 2.68 kW per person. Using the figure 0.49 for the capability (or load)
factor, this translates into an average use of energy at the rate 1.3 kW per person.
The latter figure is easy to remember and gives an appreciation of the rate of elec-
tricity consumption in the United States.

In the next few sections we consider some typical power plant sources of ener-
gy: fossil-fuel steam plants, nuclear plants, and hydroelectric plants. Space does
not permit a detailed physical description. For more details, see a standard
reference such as the McGraw-Hill Encyclopedia of Energy. The Web site www.
powerlearn.ee.iastate.edu offers pictures of various items of power equipment. If
you can arrange 1t, there is nothing better than a visit to a power plant.

1.2 FOSSIL-FUEL PLANT

Coal

Pulverizer

R A valve

ot S ey | Circuit . yransformer X |
Steam breaker ' | /m 110-765 kV
Coal | \/_,_ Control 1130 kV l | I Y

In a fossil-fuel plant, coal, oil, or natural gas is burned in a furnace. The combustion
produces hot water, which is converted to steam, and the steam drives a turbine, which
1s mechanically coupled to an electric generator. A schematic diagram of a typical
coal-fired plant is shown in Figure 1.5. -In brief, the operation of the plant is as fol-
lows: Coal is taken from storage and fed to a pulverizer (or mill), mixed with pre-
heated air, and blown into the furnace, where it is burned. *

The furnace contains a complex of tubes and drums, called a boiler, through
which water is pumped; the temperature of the water rises in the process until the

Combustion gases
to precipitator
and stack

Stop
vaive

- Step-up -

X

X

i Boiler

. J Transmussion
——r=3Generator | system

. Condenser ;

Alr

Furnace Feed
water H
Cooling

Preheated | Cooling tower
air water - R
Feed water

pump

Figure 1.5 ' Coalfired power station (schematic).




