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Preface

The statement of professor Katsuyuki Nishimoto expressed in his book entitled
“An Essence of Nishimoto’s Fractional Calculus, Calculus of the 21st Century: In-
tegrations and Differentiations of Arbitrary Order” [Nishimoto (1991b)] dated 1991
appeard as the prohecy of the end of XX century. This apt opinion confirms the
Science Watch of Thomson Reuters stating in October, 2009 that the fractional
calculus nowadays is an ‘Emerging Research Front’.

Since the mid-twentieth century, the fractional calculus consequently has been
introduced at ‘the mathematical and technical scientific fora’ of the world by sci-
entists out of whom there should be mentioned Oldham, K. B., Jerome Spannier
[Oldham and Spannier (1974)], Katsuiuki Nishimoto [Nishimoto (1984, 1986, 1989)],
Stefan Samko, Anatoly A. Kilbas and Oleg Marichev [Samko at al. (1986)], Ken-
neth S. Miller and Bertram Ross [Miller and Ross (1993)]. It is worth noting the
great contribution of professors: Alain Oustaloup [Oustaloup (1983, 1991, 1995)],
Virginia Kiryakova [Kiryakova (1994)], Igor Podlubny [Podlubny (1999b)] and their
teams contributing to the development of the fractional calculus.

According to professor Katsuyuki Nishimoto’s forecast the beginning of twenty-
first century brought a rapid growth of works devoted to the theoretical and ap-
plied fractional calculus. Among many important monographs one should mention
the works of professors: Shantanu Das [Das (2009); Das and Pan (2012)], Ten-
reiro Machado, Ivo Petrds [Petras (2011)], YangQuan Chen [Monje et al. (2010)],
Dumitru Baleanu [Baleanu et al. (2011)] and Alain Oustaloup [Oustaloup (2014)].

The precise historical review is contained in the articles by Professors: J. Ten-
reiro Machado, Virginia Kiryakova, Francesco Mainardi [Machado at al. (2011)]
and J. Tenreiro Machado, Alexandra M. Galhado and Juan J. Truijllo [Machado
at al. (2013)].

Now, also in Poland, the fractional calculus is the subject of research in many
scientific centers, among which one should list the following professors and their
teams: Malgorzata Klimek at Czestochowa University of Technology (Czestochowa)
[Klimek (2009)], Tadeusz Kaczorek [Kaczorek (2011)] and recently deceased Pro-
fessor Mikolaj Buslowicz at Bialystok University of Technology, Jerzy Klamka
at Silesian University of Technology (Gliwice), Andrzej Dzielinski at Warsaw
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University of Technology, Wojciech Mitkowski at The AGH University of Science
and Technology (Krakéw), Stefan Domek [Domek (2013)] at West Pomeranian
University of Technology (Szczecin), Krzysztof Latawiec and Rafal Stanistawski
at Opole University of Technology.

At this point the Author would like to apologise for not menitoning the re-
maining prominent scientists working on the fractional calculus developement and
applications in different scientific areas.

The fractional calculus originally concerned continuous-variable functions. Such
functions describing the so-called analog signals of real world are continuous func-
tions of the temporal variable t. One of the first fractional-order derivatives ap-
plication appeared in the anomalous diffusion models. In the early sixties of the
last century there was proposed the fractional model of the ultra-capacitor. In me-
chanics, the viscoelasticity phenomenon [Freed et al. (2002); Meral et al. (2010)]
particularly accurately describes mathematical models based on the fractional
calculus.

The inerposition of the digital computers to signal processing which can deal
with immense quantities of information expressed by numbers, not signals, forced a
conversion of the analog signal to a sequence of samples expressed as a set of digital
words. This sampling process is usually performed in a digital-to-analog converter
(under the well-known restriction expressed by the Shannon theorem). Therefore,
one establishes a relation between the continuous variable function and its discrete-
variable counterpart. In a discrete version of the fractional calculus the continuous-
variable functions are substituted by discrete-variable ones, the fractional-order
derivatives are replaced by fractional-order differences and the fractional-order in-
tegerals by fractional-order sums. One should admit, that operating on fractional-
order differences and sums is more complicated in comparison with the integer-order
case. The complications are related to longer signal processing time and larger
computer memory needed. The huge development of computers, converters and the
memory size compensates for this inconvenience.

This book presents selected applications of the discrete fractional calculus in
the discrete system control theory and discrete image processing. In the discrete
system identification, analysis and synthesis one can consider integer or fractional
models. Usually fractional models are more simple, with lower number of parame-
ters including the fractional orders. In the closed-loop system analysis and synthesis
one can consider fractional order controllers or compensators with the integer order
plants or more general case where both the regulator and the controlled plant are
described by the fractional-order difference equations. The classical problems in the
control theory ranges from transient and frequency response analysis of dynamic
elements and systems, fractional-oredr PID controllers, fractional-order systems’
stability, fractional-order systems’ robustness, the optimal control of the fractional-
order systems including the variational problem. The classical digital filters can be
generalised to the fractional-order case, where backward differences are generalised
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to the fractional-order case. Also in the digital image processing one can succes-
fully generalise classical methods to the fractional ones. Here, one should mention
early works of the CRONE team at the University of Bordeaux on image edge
detection.

The monograph is organised as follows. Basing upon the discrete calculus
given in Chapters 1 and 2 fundamental properties of the fractional-order backward-
diference and sum are presented. Althought as a fundametal form of the fractional-
order backward difference/sum the Griinwald-Letnikov one is used, its five equiva-
lents: Horner, Riemann-Liouville, Caputo, Polynomial-Like Matrix and Laguerre-
based are introduced in Chapter 3. The simple graphical interpretation of the
Griinwald-Letnikov form is proposed in Chapter 4. Chapter 5 contains the funda-
mental proprties of the fractional-order backward difference/sum. In the equations
only FO backward differences without forward shifts are considered. An application
of the discrete fractional calculus starts in Chapter 6 where the non-linear fractional-
order dynamical system linearisation procedure is presented. The linearised system
descriptions by: the fractional-order difference equation, the state-space equations,
discrete fractional transfer function and polynoimial like matrix are given. The lin-
ear time-invariant FOE solution y(k) at the discrete time instant k& depends only on

antecedent solution values y(k —1),y(k —2),.... This creates the problem of initial
conditions denoted as yx,—1, Yr,—2. . - .. No forward shift is addmitted. For the four

equivalent forms mentioned above homogenous and forced solutions are studied in
Chapter 7. Numerous transient responses are presented. This chapter contains
also the FOS frequency characterisitcs analysis represented by the discrete Nyquist
plots, amplitude and phase discrete characterisites and related discrete Bode plots.
The FOS reachability and observability supplement the FOS dynamic properties
analysis. The FOS stability tests based on the frequency characteristics finish the
selected applications of the discrete fractional calculus in the linear discrete system
analysis. In Chapter 8 fundamental dynamical elements are analysed. They follow
those known in the clasical linear discrete-time: summator, differentiator, lag and
oscillation ones. The connections considered in Chapter 9: parallel, serial and with
the negative feedback enable building more complicated dynamical strucutres. The
closed-loop system structure with the fractional order PID controllers is considered
in Chapter 10. Three last chapters presents applications of the discrete fractional
calculus in image processing. Considering an image as two variable discrete func-
tions, in Chapters 11, 12, 13 one applies fractional order backward difference and
sum to build an image of the fractional potential, detect an image edge and to filter
an image.

The book is dedicated to students and engineers working on automatic control,
dynamic system identification and image processing. Like in any monograph, there
are inevitable errors. Therefore the Author encourages all readers to send any
information about them and suggestions improving the topics dealt with in the
book.
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