
Recent Advances in Layered Double Hydroxide-Based Composites

Synthesis, Properties and Potential Applications

Mohamed Reda Berber Inas Hazza Hafez

Chemistry Research and Applications

RECENT ADVANCES IN LAYERED DOUBLE HYDROXIDE-BASED COMPOSITES

SYNTHESIS, PROPERTIES AND POTENTIAL APPLICATIONS

Copyright © 2015 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher.

For further questions about using the service on copyright.com, please contact:

Copyright Clearance Center

Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: info@copyright.com.

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers' use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication.

This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Additional color graphics may be available in the e-book version of this book.

Library of Congress Cataloging-in-Publication Data

Recent advances in layered double hydroxide-based composites: synthesis, properties, and potential applications / editors, Mohamed Reda Berber and Inas Hazza Hafez (Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt).

pages cm. -- (Chemistry research and applications)

Includes bibliographical references and index.

ISBN 978-1-63482-099-8 (hardcover)

1. Layered double hydroxides. 2. Composite materials. I. Berber, Mohamed Reda, editor. II. Hafez, Inas Hazza, editor.

QD474.R45 2015 661'.35--dc23

2015002250

RECENT ADVANCES IN LAYERED DOUBLE HYDROXIDE-BASED COMPOSITES

SYNTHESIS, PROPERTIES AND POTENTIAL APPLICATIONS

CHEMISTRY RESEARCH AND APPLICATIONS

Additional books in this series can be found on Nova's website under the Series tab.

Additional e-books in this series can be found on Nova's website under the e-book tab.

PREFACE

Naturally occurring materials such as layered materials along with artificial layered materials produced industrially, are receiving a great deal of attention in the field of nanotechnology, in particular hybrid and composite research fields. They have a chemical composition and particular structure that give them specific properties or functions in relation to their surroundings or their formation conditions. Layered double hydroxide (LDH) is an important kind of the layered materials. They are formed in nature under certain conditions, and can be studied either in their original state or after being modified. LDH is considered to be one of the most important materials in the field of organic-inorganic composite research.

The fact that this book issued is due the fast progress in the field of LDH and its composites, and also how important the LDH research is in the entire world. Therefore, it is an appropriate time to compile a book presenting a comprehensive review of the current status of LDH, especially focused on its recent advances. In this book, we aim to present an overview of the recent advancements of research in LDH in the areas of synthesis, properties and potential applications in fields such as, additives of polymers, catalysis, adsorption, water purification, medicine, pharmaceutics, photochemistry, biochemistry, and electrochemistry.

This book consists of a number of chapters. In the second chapter, we surveyed the different synthetic techniques of LDH and its composites. The third chapter summarized the LDH properties including solubility and swelling properties, acid-base properties, specific surface area and factors affecting it, pillaring character, crystallite structure factors affecting it, particle size properties, thermal properties, memory effect property and factors affecting it, anion exchange capacity, biomedical properties, photocatalytic properties, photoluminescence properties, magneto-optical properties, and the photochromism phenomena. The fourth, fifth and sixth chapters focused on the different applications of LDH mentioned above.

We hope this book will be beneficial for the scientific community including students, teachers and researchers. On the other side of this book, I would like to thank my dear wife and my children Ayten, Lama, Perla, and Yuki for their unfailing and understanding during the preparation of this book.

At the same time, I would like to thank my parents who are looking forward to seeing me.

Also, sincere thanks to all the members of Tanta University, Damanhour University, and Kyushu University for their support during the preparation of this book.

AUTHORS' BIOGRAPHIES

Dr. Mohamed Reda Berber

After graduating from the Chemistry Department, Faculty of Science, Tanta University, Egypt in 1997, *Dr. Mohamed Reda Berber* obtained his PhD from Tokushima University, Japan, followed by a post-doctoral fellowship at Kyushu University, Japan. Now, he is an assistant professor at the same University.

Dr. Berber carried out a scientific research for more than 19 years including the research of natural polymers, synthetic polymers, organic-inorganic composites, polymer composites and polymer electrolyte membrane fuel cells (PEMFCs). During that period, he co-authored two academic books, and published 30 papers in refereed international journals and more than 71 conference papers.

Dr. Berber is internationally recognized for his work in chemistry. His smart sensitive polymeric material work was selected as one of the *Hot Topics in Polymer Science Japan* in 2010. Also, very recently his work in PEMFC was highlighted in *NATURE*.

Dr. Berber is an active member of the American Chemical Society (ACS) and the Society of Polymer Science, Japan (SPSJ). He is a potential reviewer in many international journals including International Journal of Nanomedicine, Journal of Nanobiotechnology, Current Nanoscience, Journal of solid state Chemistry, Journal of Applied Mechanical Engineering, International Journal of pharmaceutics, Toxicological and Environmental chemistry, International Journal of Molecular Sciences, Chemistry Central Journal, and Applied Clay Science.

In recognition of his achievements in science, his bio-data is published in Marquis *Who's Who* in 2011 and 2014. Also, he dedicated in the year 2012 to the world forum sixth edition,

OXFORD, as one of the great minds of the 21st century. In addition, he represented Egypt in the advisory board of the International Association of Hydrogen Energy (IAHE) during the 20th World Hydrogen Energy Conference held in South Korea.

Dr. Inas Hazza Hafez

Dr. Inas Hazza Hafez graduated from Alexandria University, Egypt, and obtained her master degree in Agriculture Engineering from the department of Water Resources and Agriculture Engineering of the same university. Dr. Inas received her PhD in Polymer Science and Nanotechnology from The University of Tokushima, Japan, followed by a post-doctoral fellowship at Kyushu University, Japan.

Dr. Inas is an expert on agriculture engineering, in particular irrigation systems, polymersoil applications, polymer nanocomposite applications, catalysis and polymer electrolyte membrane fuel cells. She co-authored two academic books, and published more than 20 papers in refereed international journals and more than 50 conference papers. Currently she is working at International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University in the field of fuel cells and their environmental applications.

Dr. Inas is a member of the Society of Polymer Science, Japan (SPSJ). In recognition of her scientific achievements, her bio-data is published in Marquis *Who's Who* in 2015.

ABBREVIATIONS AND SYMBOLS

AA Acrylic acid

AEMFCs Anion-exchange membrane fuel cells

AFM Atomic force microscopy

Al Aluminium As Arsenic

ATP Adenosine triphosphate

AQS Anthraquinone sulfonate anion

BEHP Bis(2-ethylhexyl)hydrogen phosphate

BET Brunauer-Emmett-Teller

Ca Calcium
Ce Cerium
CFs Carbon fibers

CHN Carbon, hydrogen and nitrogen content

Cl Cloride CO₃ Carbonate Co Cobalt

β-CMCD Carboxy-methyl beta-cyclodextrin

CNT Carbon nanotubes

Cr Chromium Cu Copper

CV Conventional coprecipitation technique of LDH

CV Cyclic voltammetry

d The spacing between each lattice

D₀₀₃ Crystallite size of LDH
 D Dielectric constants
 DDBS Dodecylbenzenesulfonate
 DEFCs Direct ethanol fuel cells

DHBC Double hydrophilic block copolymers

DIP Digital image processing
DMF Dimethyl formamide
DMT Dimethyl terephthalate

DODMA Dioctadecyldimethylammonium

DSCs Dye-sensitized solar cells

EDTA Ethylene diamine tetra acetic acid

EG Ethyleneglycol

EXAFS Extended X-ray absorption fine structure spectroscopy

Fe Iron

FESEM Field emission scanning electron microscopy
FTIR Fourier transform infrared spectroscopy

FFT Fast Fourier transform analysis FWHM Full width at half-maxima

GA Gibberellic acid HAAs Haloacetic acids

HPIC Hybrid polyion complex

HRTEM High resolution transmittance electron microscopy

IBU Ibuprofen

ICP-AES Inductively coupled plasma atomic emission spectroscopy ICP-OES Inductively coupled plasma optical emission spectroscopy

IPDI Isophorone diisocyanate

IPCE Incident-photon-to-current-conversion efficiency

LDH(s) Layered double hydroxide(s)

Li Lithium

M^(II) Divalent metal M^(III) Trivalent metal

MCD Magnetic circular dichroism

MEAs Membrane assemblies

Mg Magnesium

MMO Mixed metal oxides MMT Montmorillonite Mn Manganese

MW Microwave radiation
NaDDS Sodium dodecyl sulfate
NMR Nuclear magnetic resonance

NO₃ Nitrate Ni Nickel

TEM Transmittance electron microscopy
THMs Bromochloro-trihalomethanes
OER Oxygen evolution reaction
ORR Oxygen reduction reaction

PAA Polyacrylic acid PAM Polyacrylamide

PEGS Polyoxyethylene sulfate
PEC Photoelectrochemical
PL Photoluminescence
PMP Phenoxymethylpenicillin

PS Polystyrene beads

PSS Poly(sodium styrene 4-sulfonate)

PVA Polyvinylalcohol

PXRD Powder X-ray diffraction

RB19	Remazol Blue 19	1
KD19	Kemazoi Diue 15	1

SDS Sodium dodecyl sulfate

SEM Scanning electron microscopy

Sn Tin

SSA Specific surface area

Ti Titanium

TPB Triple phase boundary

U Urea hydrothermal treatment of LDH

V_{OC} Open-circuit voltage

WHO World Health Organization

XPS X-ray photoelectron spectroscopy

Y Interlayer anion

Zn Zinc

ZnAc Zinc acetate

CONTENTS

Preface		vii
Authors' Biog	graphies	ix
Abbreviation	s and Symbols	xi
Chapter 1	General Introduction of Clay Materials	1
Chapter 2	Recent Advances in the Synthesis of LDH-Based Composites	9
Chapter 3	Properties of LDH	83
Chapter 4	Environmental Applications of LDH	129
Chapter 5	Energy Applications of LDH	175
Chapter 6	Biomedical and Pharmaceutical Applications of LDH	201
Index		219

GENERAL INTRODUCTION OF CLAY MATERIALS

1. HISTORICAL BACKGROUND OF CLAYS

Clays are fine-grained soil distinguished by its size and mineralogy. It combines one or more clay minerals, i.e., alkali metals, alkaline earths, and other cations with traces of metal oxides and organic matter. With regard to the origin and formation of clays as assessed principally by X-ray diffraction and microscopic techniques, there are three principal processes to account for the genesis of clay minerals, which may occur at different points in the geochemical cycle including weathering or soil formation at the earth's surface. These processes are: a- detrital inheritance whereby, for soils, clay minerals are inherited from pre-existing parent rock or weathered materials; b- transformation where the essential silicate structure of the clay mineral is maintained to a large extent, but with major change in the interlayer region of the structure; and c- neoformation, where the clay mineral forms through crystallization of gels or solutions. [1]

2. Types of Clays

Clays are divided into two main groups depending on their ionic character; cationic clays and anionic clays. [2]

2.1. Cationic Clays

Cationic clays are widely occurring in nature, having negatively charged layers with cations in the interlayer space to balance the net negative charge. They are generally prepared starting from the clay minerals. [3] The most common cationic clay is smectite, in particular, montmorillonite which is a hydrated magnesium and aluminum silicate with sodium ion or calcium ion as interlayer cations. The interlayer cation can be easily replaced by a foreign cation, thus, montmorillonite have received a great deal of attention. Montmorillonite has different applications in the different fields, including medicine, pharmacy, food production, catalysis, surfactants, and agriculture. It is also common as nanofiller to improve the mechanical and the thermal properties of the polymers. [2]

2.2. Anionic Clays

Anionic clays are natural or synthetic materials based on metal hydroxide layers with a net positive charge balanced by water and exchangeable anions. They also identified as intermediates in weathering of serpentines and basalts. [4] Anionic clays can be defined by their chemical composition, basal spacing and stacking sequence. They exhibit quite large variation in the chemical composition of the metal hydroxide layers and are capable of incorporating a wide range of cations in these layers. Basically there is no restriction on the anion type used in the exchange process, which makes anionic clays an attractive material for the different applications. [4] There are different kinds of anionic clays depending on the composition and the polytype form of the minerals used during the formation of the clay. Figure 1, summarizes most of the naturally occurring anionic clays. [5, 6]

2.2.1. Hydrotalcite

Hydrotalcite is the most common type of the anionic clays. It is a natural mineral with a white color and pearl like luster. Hydrotalcite named in 1842 by Carl Christian Hochstetter due to its high water content (Hydro-) and to its resemblance to talc. It is a compound of magnesium and aluminum with a layer structure, having the following composition Mg₆Al₂(OH)₁₆CO₃.4H₂O. Kyowa Chemical Industry of Japan has noted this unique structure of hydrotalcite and has become the first in the world to succeed in the industrial synthesis of hydrotalcite in 1966. [3] Kyowa's synthetic hydrotalcite was developed first as a medical antacid agent. It has been sold by globally known pharmaceutical firms and continues to be widely supplied to various nations all over the world. [3] on the basis of X-ray analysis, hydrotalcites are stacked in various ways, which gives rise to a variety of possible polytypes structures. If the opposing OH groups lie vertically above one another, an interlayer with a trigonal prismatic arrangement results, whilst if they are offset, an octahedral arrangement is formed. There are three possible two-layer polytypes with hexagonal stacking of the layers, donated 2H₁, 2H₂, and 2H₃, where the 2H₁ polytype has all prismatic interlayers and the 2H₂ polytype has all octahedral interlayers, whilst both types of interlayers are present in the 2H₃ polytype. There are nine possible three-layer polytypes, of which two have rhombohedral symmetry-3R₁ and 3R₂, whilst the remaining seven (3H₁-3H₇) have hexagonal symmetry. [7, 8]

Mineral	Chemical composition	Unit cell pa	Symmetry	
		a (nm)	c (nm)	
Hydrotalcite	Mg ₆ Al ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.3054	2.281	3R
Manasseite	Mg ₆ Al ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.31	1.56	2H
Pyroaurite	Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.3109	2.341	3R
Sjogrenite	Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.3113	1.561	2H
Stichtite	$Mg_6Cr_2(OH)_{16}CO_3.4H_2O$	0.31	2.34	3R
Barbertonite	$Mg_6Cr_2(OH)_{16}CO_3.4H_2O$	0.31	1.56	2H
Takovite	Ni ₆ Al ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.3025	2.259	3R
Reevesite	Ni ₆ Al ₂ (OH) ₁₆ CO ₃ .4H ₂ O	0.3081	2.305	3R
Meixnerite	Mg ₆ Al ₂ (OH) ₁₈ .4H ₂ O	0.3046	2.292	3R
Coalingite	Mg ₁₀ Fe ₂ (OH) ₂₄ CO ₃ .2H ₂ O	0.312	3.75	3R

Figure 1. Composition, crystallographic parameters and symmetry for anionic clays.