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Preface

There are many books on. kinetic theory of gaces and plasmas on the market.
Vhat was the motivation of the author in writing another book on this subject ?

The foundations of present-day non-equilibrium statistical theory of gases
and plasmas is due to the important work of N.N. Bogolyubov, M. Born, A.A. Vlasov,
H. Green, J. Kirkwood, J. Yvon, L.D. Landau and I.R. Prigogine. In this book we
attempt to present some of the ideas and methods of their work. They will be
applied to a complete description of the kinetic processes in nonideal gases and
plasmas and to the derivation of the kinetic thecory of long-range fluctuations.
The latter is important, in particular, for the description of turbulent processes,
defining the so-called anomalous transport processes.

Clearly, the simplest case is the one of weak nonideality, in which it is
possible to introduce a small parameter: the density parameter or the plasma
parameter. For denser systems one uses model equations, as in equilibrium theory.
In this field, the developments are at present still very preliminary.

The theory is construcied as a generalization of the kinetic theory of
ideal gases and plasmas. It is therefore important to analyze the limitations of
the usual kinetic equations. The book is written with great detail; therefore it
should be of use not only to research physicists, but also to professors, and to
graduate students of various specializations.

The book consists of three parts. The first part is devoted to the classi-
cal kinetic theory of nonideal gases, the second to the classical kinetic theory of
fully ionized plasmas, and the third to the quantum kinetic theory of nonideal gases
and plasmas. The concluding chapter presents a short account of the kinetic theory
of chemically reacting systems and of partially ionized plasmas, This chapter was
included in order to indicate some directions of further generalizations of the
present results. and to attract attention upon this important and interesting

problem.

KTNG - A*
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X PREFACE

The main stress is laid here on the fundamental aspects of the theory.
Relatively little space is given to the applications. Whenever possible, the
reader is directed towards additional literature.

In several places of this book I used results obtained in collaboration
_tvit.h my students and collaborators: V.V. Belyi, YU.A. Kukharenko, W. Ebeling,
W. ¥raeft, V.A. Puchkov, E.F. Slin'ko. The collaboration with them was for me not
only useful, but also pleasant.

K.P. Gurov was the first person who read my work on the kinetic theory of
nonideal gases and plasmas. He also read the manuscript of this book. I am very
grateful to him for his help. I also gratefully acknowledge the remarks and dis-
cussions about the manuscript with V.V. Belyi, L.M. Gorbunov, M.E. Marinchuk and
A.A. Rukhadze.

The Author
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PART I
Kinetic Theory of Nonideal Gases

INTRODUCTION

The basis of the kinetic theory consists of the equations for the one-
particle distribution function: the kinetic equations. Typical kinetic equations
are those of Boltzmann, of Vlasov, of Landau, and of Balescu and Lenard.

All the kinetic equations are approximate; therefore they provide a
simplified description of the statistical processes in gases and plasmas. There
are phenomena, which cannot be described in terms of the known kinetic equations.
In order to include such phenomena in the description, the assumptions made
in the derivations of these equations must be weakened and these equations must be
generalized.

Thus, in deriving the Boltzmann equation from the Liouville equation (o¥
from the corresponding BBGKY hierarchy) one makes use of the smallness of the den-
sity parameter €. Similarly, for a plasma one assumes that the plasma parameter \
is small.

The parameters € and W characterize the role of the interactions in the
kinetic equations for gases or plasmas. This role is twofold. On the one hand, it
defines the relaxaiion processes responsible, for instance, for the approach to
equilibrium. In other words, the interaction determine the dissipative processes
in gases and plasmas.

On the other hand, the interactions contribute to the non-dissipative proper-
ties, e.g., the thermodynamic functions (internal energy, pressure, entropy, etc.).
These contributions of the interactions are responsible for the deviations of these
quantities from their ideal value.

In the Boltzmann, Landau or Balescu-Lenard equations, the interactions deter-

mine only the dissipative characteristics. In this sense, these equations can be
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called kinetic equations for the ideal gas or plasma. One of the problems of the
present book 1is the construction of kinetic equations for ncnideal gases and
plasmas. Within their corresponding models — the binary collision approximation or
the polarization approximation — these equations take account of the contributions
of the interactions to both the dissipative and the non-dissipative properties [17,
18]. (see also refs [6, 67, 68, 71, 73]).

The second problem of the book is the construction of kinetic equations for
dense gases. The first difficulty in this direction is the derivation of equatioms
taking into account both binary and triple collisions. Such an equation was derived
by Choh and Uhlenbeck [5], by using Bogolyubov's expression for the two-particle
distribution function to the first order in the density parameter. This kinetic
equation is not quite consistent. In the dissipative characteristics it takes
account of both binary and triple collisions, but in the non-dissipative properties
it retains only binary collisions. In this book we derive an equation in which the
triple collisions are treated more completely.

In ref. [4], Bogolyubov developed a method by which, assuming the com-
plete weakening of the initial correlations, he expands the two-body correlations
systematically in powers of the density parameter. Clearly, this method also leads
to an expansion of the collision integral of the kinetic equation in powers of the
density. However, the realization of Bogolyubov's programme faces some difficul-
ties of principle. The investigations of Weinstock [19], Goldman and Freeman [20],
Dorfman and Cohen [21], showed that the collision integral, including four-body and
higher order collisions, diverges [22].

The solution of these difficulties leads to the modification of the basic
assumptions underlying the kinetin equations. It was shown that the complete
weakening of the initial correlations must be replaced by the more flexible assump-
tion of the partial weakening of these correlations [23, 24]. By using this
assumption, we derive from the Liouville equation an equation for the smoothed
distribution function in phase space. From the latter we derive a hierarchy for
the smoothed distribution functions. It differs from the BBGKY hierarchy in re-
taining explicitly the dissipation due to binary collisioms. If this hierarchy is
solved by assuming the complete weakening of the initial correlations in a time
shorter than the binary collision relaxation time, the Boltzmann equation is
recovered.

For denser gases, we obtain from the smoothed hierarchy a kinetic equation
whose collision integral is convergent. In this way, one may construct kinetic
equations taking into account four-body, five-body collisions, etc. But these

equations become more and more complicated. One therefore uses a more convenient

method, analogous to the one used in equilibrium statistical hanics of d
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gases and fluids. Instead of a kinetic equation for the one-particle distribution,
one rather uses a set of equations for the one-particle distribution and for the
binary correlations.

From the hierarchy for the smoothed distribution functions we may derive
kinetic equations taking into account the long-range fluctuations. From the latter
we may derive hydrodynamic equations in which the viscosity and the thermal conduc-
tivity are determined not only by the collisions, but zlso by the long-range
fluctuations.

In the derivation of the Boltzmann equation, one assumes implicitly the
continuity of the collision process defining the collision integral. This amounts
to describing the distribution function as a deterministic (non-fluctuating) quan-—
tity. Taking into account the discreteness of the collision processes leads to
fluctuations of the distribution function. These fluctuations have a range much
longer than the one of the fluctuations defining the collision integral. In order
to describe the former, we may consider the Boltzmann equation as a Langevin equa-
tion with a given source of fluctuations: the latter was first studied by Kadomtsev
[25]. The development of the kinetic theory of the equilibrium and non-equilibrium
fluctuations in gases is another problem of our book (chapter 4). The correspond-

ing theory for plasmas is studied in chapter 11.
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CHAPTER 1

The Method of Distribution
Functions and the Method of
Moments

1y EQUATIONS FOR THE POSITION AND MOMENTUM DISTRIBUTION
FUNCTIONS IN A GAS OF MONATOMIC PARTICLES

The microscopic mechanical state of a monatomic particle gas at time t is

defined by the specification of the positions r_ and of momenta Py by

T osesoy
of all the N particles. For conciseness, we inl:lroduce gle notations: z,= (fi ; Pi\.
a six-dimensional vector defining the state of the particle labelled 7 (1 < Z < ¥),
and x = (zl,...,zﬂ), a 6N—dimensional vector defining the state of the complete
system. .

The distribution function of the variables x is denoted by fN(x st). The
expression f”(z.t) dx represengs the probability that, at time ¢, the coordinates
and momenta of the particles have values within a range dr around x. The function
fy is normalized as follows: [dz f,x,t) =1.

Let O(|f_£—fj|) E°ij denote the potential energy of central interaction of
the pair of particles %,j. Let also m denote the mass of the atoms. Then the

Hamiltonian H of the gas can be written as:

2

P

H= Z (2—E+u(r.)\+ Z ®.. (1.1)
1<z <y \2m Y1k <gsw W

where u(ri) is the potential energy of an atom in the external field.
The distribution function f”(:c,t) obeys the Liouville equation:
af

af, o 9oF
Ny (_a”.—fl—a’ -a_l)=0 (1.2)
3 j<i< NP 3Ty i P

We now use Hamilton's equations for the particles:

P,
38 _ Py _
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9d.. .
pomm o 2 BHary 4 (1.3)
z ;o o1<j<m %% %
J*i
Equation (1.2) can then be rewritten

af, af af
?g-+ z 'i'ia'?ﬂ +F(rt.)'—”—'f =0 (1.4)

1<:<j 1 i

We introduced here the expression Ip(fi,t) representing the force acting on the
particle labelled 7 :

r. _‘—— z avg ¥ r 5
F = F
';E'

where Fb =-—au/3ri is the external force.
We now consider several different forms of the Liouville equation. We

introduce the following operator notations:

.. 5 W..

8 -=—11'—+T"” sest (1.6)
d 3'1: api rj ap,]'
SN S AP R S 1 B (.7
i s 1<4{<s 2 i 1<i<j<s ™
2;0) . =i+ z (yi.ai+Fo._a_) (1.8)
pree®s 3 ggigs i p,

Using the definitions (1.6), (1.7), the Liouville equation can be written as:

3 3 2 2 .} 7, -
{ﬁ* 2. ("1 3—,:’:'+03p1:) 01 =0 Sl

T 1<i<j<N

or 3 .
{EJ'”x ,...,:N}fy=° (1.10)

Finally, using the operator (1.8), Eq. (1.9) can also be written as:

{2(0) _ 2 5._} B =0 (1.11)
Tyt Ty 1<i<g<N W

The Liouville equation is a linear partial differential equation of first
order: its characteristic equations are just Hamilton's equations (1.3). It follows
that the solution of the Liouville equation requires the solution of the equations of
motion of all the particles in the system. This problem can generally not be solved

for the large systems considered here.



THE METHOD OF DISTRIBUTION FUNCTIONS AND THE METHOD OF MOMENTS 7

Thus, the Liouville equation cannot be solved in general form. However, in
practice, the general solution is not necessary. -For the description of the proces-
ses in a gas it is usually sufficient to know the distribution functions of omne and
of two particles, viz., f,(z,,t) and f, {x,, ,,t). These are related in the

following way to the function fN(:c,t):
fl(xl.t)=VIdz2...d.r” £y s eees gy t) (1.12)
fi(z, 2, 0t) = v:Idz,...dzﬂ L AZ, seens g st) (1.13)

where V is the volume of the system. From these definitions follows the normaliza-

tion property of these functions:

1 1 _
7[(11:1 fi=1, ;Idz‘dxz Fsr (1.14)
\\ . .
The distribution function of a set of & particles can be defineddn a similar way:
= y8 | =
fs vV deen”'d‘cﬂ f”(x!,...,xﬁ,t), Id-cl...drsfs 1 (1.15)

VB

From the definitions (1.12) and (1.13) follows that V'lfl d.'rl represents the prob-
ability that the position and momentum of the first particle lies within limits
drl dp1 around 1, , P, , whatever the positions and momenta of the other particles
in the gas. A similar interpretation holds for V2 Ly dz‘ dz2 and for the higher
distribution functioms. X
We now show that the most important functions needed in a gas-dynamic des-—
cription can be determined from the sole knowledge of the distribution function f,.
In gas dynamics, the most important properties are the number density of
the particles, the momentum (or velocity) density and the kinetic energy density
(or temperature). (In a non-stationary state, these functions depend on the position

and on the time:
n=n(r,t), uw=u(r,t), wW=Ww(r,t)

where W is the kinetic energy density.
The quantities n, nu, W are average values of the corresponding microsco-
pic quantities n; (nu)l, # which are defined as follows

n.(r st) z 8§(r—r(®))

1<i<N

M n)‘(r +5)

z v.8(r—r.(t))
1<i<y * .

W, t) = z (p2/2m) &(r—r .(t)) (1.16)
1<i< ¥ * z
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Using the definition
(4) = [z a(=) £yl » 2)

and taking account of the properties of the §-function:
é

' Jar se=ary =1, [ s(z=e) e’ ) = ()
we obtain

n(r,t)

dx Z ' S(r—r, (&))f =N|dz8(r—r,(t)) f
[ 1<i<h z N J 1 N

L %J‘dpl dr, §(r—r,) f (r, .p,,t)=g- Idpf‘(r,p,t) (117
and similarly

n(r,t)u(r,t)

(/v) [ap (p/m) £,(rspot) . ;

Wr , t)

]

(w/v) Idp(pzlzm) filrspst) (1.18)

From Eqs (1.17), (1.18) follows that for the statistical description of the
gas-dynamical variables, the knowledge of the one-particle distribution function
fl (r,p,t) is sufficient. The factor N/V entering Eqs (1.17), (1.18) represents
the number of particles per unit volume, averaged over the whole volume. This quan-
tity will be denoted by n: N/V=n . The quantity 1/n represents the specific
volume, i.e. the.volume per particle.

As the definition of many important averages requires only the knowledge of
the one-particle distribution function, we are justified in making an effort for
deriving equations which would only involve this function fl .

In order to obtain such an equation, we multiply Eq. (1.4) for fIV by V
and integrate it over all variables except the first. W: consider the result of
this operation for each term separately.

BfN afl

o O
2 ¥ a3t ot

Here'we used Eq. (1.12) defining fl . In order to integrate the second term we

must taken into account the fact that the distribution function tends to zero at

the boundary uf the volume enclosing the system. We thus obtain:

af afl
Vfdxz...d:rﬂ ot mmly =
1<z<8 v g or,

For the integration of the third term. we take into account the fact that the dis-
tribution function vanishes as the momenta tend to infinity; using also the defini-

tion (1.13) of f? , we obtain:



