

System Analysis and Design

Paulo S. R. Diniz, Eduardo A. B. da Silva, and Sergio L. Netto

Digital Signal Processing

System Analysis and Design

Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto

Federal University of Rio de Janeiro

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.5/14pt. System LATEX 2_{ε} [DBD]

A catalogue record of this book is available from the British Library

Library of Congress Cataloguing in Publication data

Diniz, Paulo Sergio Ramirez, 1956-

Digital signal processing: system analysis and design / by Paulo S. R. Diniz.

Eduardo A. B. da Silva, and Sergio L. Netto.

p. cm.

Includes bibliographical references and index.

ISBN 0 521 78175 2

 Signal processing-Digital techniques. I. Silva, Eduardo A. B. da (Eduardo Antônio Barros da, 1963-II. Netto, Sergio L. (Sergio Lima), 1967-III. Title.

TK5102.9.D63 2001

621.382'2-dc21 2001025447

ISBN 0 521 78175 2 (hardback)

MATLAB is a registered trademark of The MathWorks Inc.

Verilog is a registered trademark of Cadence Design Automation Co.

SHARC is a registered trademark of Analog Devices Inc.

All ADSP-21XX, ADSP-219X, and TigerSHARC DSPs are trademarks of Analog Devices Inc.

All DSP5600X, DSP5630X, DSP566XX, and MSC81XX, DSPs, including the MSC8101, are trademarks of Motorola Inc.

All TMS320C10, TMS320C20X (including the TMS320C25), TMS320C50, TMS320C3X (including the TMS320C30 and TMS320VC33-150), TMS320C40, TMS320C8X, TMS320C54X, TMS320C55X, TMS320C62X, TMS320C64X, and TMS320C67X DSPs are trademarks of Texas Instruments Inc.

For MATLAB product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7101

e-mail: info@mathworks.com web: www.mathworks.com

Digital Signal Processing

System Analysis and Design

Digital signal processing lies at the heart of the communications revolution and is an essential element of key technologies such as mobile phones and the Internet. This book covers all the major topics in digital signal processing (DSP) design and analysis, supported by MATLAB® examples and other modeling techniques. The authors explain clearly and concisely why and how to use digital signal processing systems; how to approximate a desired transfer function characteristic using polynomials and ratios of polynomials; why an appropriate mapping of a transfer function onto a suitable structure is important for practical applications; and how to analyze, represent, and explore the trade-off between time and frequency representation of signals. An ideal textbook for students, it will also be a useful reference for engineers working on the development of signal processing systems.

Paulo S. R. Diniz teaches at the undergraduate Department of Electronics and Computer Engineering at the Federal University of Rio de Janeiro (UFRJ), and at the graduate Program of Electrical Engineering at COPPE/UFRJ, where he is a professor. He is also a visiting professor at the Helsinki University of Technology. He is an active Fellow Member of the IEEE and an associate editor of two journals: IEEE Transactions on Signal Processing and Circuits, Systems and Digital Signal Processing. He is also serving as distinguished lecturer of the IEEE.

Eduardo A. B. da Silva is an Associate Professor at the undergraduate Department of Electronics and Computer Engineering at the Federal University of Rio de Janeiro (UFRJ) and at the graduate Program of Electrical Engineering at COPPE/UFRJ.

Sergio L. Netto is an Associate Professor at the undergraduate Department of Electronics and Computer Engineering at the Federal University of Rio de Janeiro (UFRJ), and at the graduate Program of Electrical Engineering at COPPE/UFRJ.

To our families, our parents, and our students

Preface

This book originated from a training course for engineers at the research and development center of TELEBRAS, the former Brazilian telecommunications holding. That course was taught by the first author back in 1987, and its main goal was to present efficient digital filter design methods suitable for solving some of their engineering problems. Later on, this original text was used by the first author as the basic reference for the digital filters and digital signal processing courses of the Electrical Engineering Program at COPPE/Federal University of Rio de Janeiro.

For many years, former students asked why the original text was not transformed into a book, as it presented a very distinct view that they considered worth publishing. Among the numerous reasons not to attempt such task, we could mention that there were already a good number of well-written texts on the subject; also, after many years of teaching and researching on this topic, it seemed more interesting to follow other paths than the painful one of writing a book; finally, the original text was written in Portuguese and a mere translation of it into English would be a very tedious task.

In recent years, the second and third authors, who had attended the signal processing courses using the original material, were continuously giving new ideas on how to proceed. That was when we decided to go through the task of completing and updating the original text, turning it into a modern textbook. The book then took on its present form, updating the original text, and including a large amount of new material written for other courses taught by the three authors during the past few years.

This book is mainly written for use as a textbook on a digital signal processing course for undergraduate students who have had previous exposure to basic discrete-time linear systems, or to serve as textbook on a graduate-level course where the most advanced topics of some chapters are covered. This reflects the structure we have at the Federal University of Rio de Janeiro, as well as at a number of other universities we have contact with. The book includes, at the end of most chapters, a brief section aimed at giving a start to the reader on how to use MATLAB® as a tool for the analysis and design of digital signal processing systems. After many discussions, we decided that having explanations about MATLAB inserted in the main text would in some cases distract the reader, making him or her lose focus on the subject.

The distinctive feature of this book is to present a wide range of topics in digital signal processing design and analysis in a concise and complete form, while allowing the reader to fully develop practical systems. Although this book is primarily intended

as an undergraduate and graduate textbook, its origins on training courses for industry warrant its potential usefulness to engineers working in the development of signal processing systems. In fact, our objective is to equip the readers with the tools that enable them to understand why and how to use digital signal processing systems; to show them how to approximate a desired transfer function characteristic using polynomials and ratios of polynomials; to teach them why an appropriate mapping of a transfer function into a suitable structure is important for practical applications; to show how to analyze, represent, and explore the tradeoff between the time and frequency representations of signals. For all that, each chapter includes a number of examples and end-of-chapter problems to be solved, aimed at assimilating the concepts as well as complementing the text.

Chapters 1 and 2 review the basic concepts of discrete-time signal processing and z transforms. Although many readers may be familiar with these subjects, they could benefit from reading these chapters, getting used to the notation and the authors' way of presenting the subject. In Chapter 1, we review the concepts of discrete-time systems, including the representation of discrete-time signals and systems, as well as their time- and frequency-domain responses. Most importantly, we present the sampling theorem, which sets the conditions for the discrete-time systems to solve practical problems related to our real continuous-time world. Chapter 2 is concerned with the z and Fourier transforms which are useful mathematical tools for representation of discrete-time signals and systems. The basic properties of the z and Fourier transforms are discussed, including a stability test in the z transform domain.

Chapter 3 discusses discrete transforms, with special emphasis given to the discrete Fourier transform (DFT), which is an invaluable tool in the frequency analysis of discrete-time signals. The DFT allows a discrete representation of discrete-time signals in the frequency domain. Since the sequence representation is natural for digital computers, the DFT is a very powerful tool, because it enables us to manipulate frequency-domain information in the same way as we can manipulate the original sequences. The importance of the DFT is further increased by the fact that computationally efficient algorithms, the so-called fast Fourier transforms (FFTs), are available to compute the DFT. This chapter also presents real coefficient transforms, such as cosine and sine transforms, which are widely used in modern audio and video coding, as well as in a number of other applications. A section includes a discussion on the several forms of representing the signals, in order to aid the reader with the available choices.

Chapter 4 addresses the basic structures for mapping a transfer function into a digital filter. It is also devoted to some basic analysis methods and properties of digital filter structures.

Chapter 5 introduces several approximation methods for filters with finite-duration impulse response (FIR), starting with the simpler frequency sampling method and the widely used windows method. This method also provides insight to the windowing

strategy used in several signal processing applications. Other approximation methods included are the maximally flat filters and those based on the weighted-least-squares (WLS) method. This chapter also presents the Chebyshev approximation based on a multivariable optimization algorithm called the Remez exchange method. This approach leads to linear-phase transfer functions with minimum order given a prescribed set of frequency response specifications. This chapter also discusses the WLS-Chebyshev method which leads to transfer functions where the maximum and the total energy of the approximation error are prescribed. This approximation method is not widely discussed in the open literature but appears to be very useful for a number of applications.

Chapter 6 discusses the approximation procedures for filters with infinite-duration impulse response (IIR). We start with the classical continuous-time transfer-function approximations, namely the Butterworth, Chebyshev, and elliptic approximations, that can generate discrete-time transfer functions by using appropriate transformations. Two transformation methods are then presented which are the impulse-invariance and the bilinear transformation methods. The chapter also includes a section on frequency transformations in the discrete-time domain. The simultaneous magnitude and phase approximation of IIR digital filters using optimization techniques is also included, providing a tool to design transfer functions satisfying more general specifications. The chapter closes by addressing the issue of time-domain approximations.

Chapter 7 includes the models that account for quantization effects in digital filters. We discuss several approaches to analyze and deal with the effects of representing signals and filter coefficients with finite wordlength. In particular, we study the effects of quantization noise in products, signal scaling that limits the internal signal dynamic range, coefficient quantization in the designed transfer function, and the nonlinear oscillations which may occur in recursive realizations. These analyses are used to indicate the filter realizations that lead to practical finite-precision implementations of digital filters.

Chapter 8 deals with basic principles of discrete-time systems with multiple sampling rates. In this chapter, we emphasize the basic properties of multirate systems, thoroughly addressing the decimation and interpolation operations, giving examples of their use for efficient digital filter design.

Chapter 9 presents several design techniques for multirate filter banks, including several forms of 2-band filter banks, cosine-modulated filter banks, and lapped transforms. It also introduces the concept of multiresolution representation of signals through wavelet transforms, and discusses the design of wavelet transforms using filter banks. In addition, some design techniques to generate orthogonal, as well as biorthogonal bases for signal representation, are presented.

In Chapter 10, we present some techniques to reduce the computational complexity of FIR filters with demanding specifications. In particular, we introduce the prefilter and interpolation methods which are mainly useful in designing narrowband lowpass

and highpass filters. In addition, we present the frequency response masking approach, for designing filters with narrow transition bands satisfying more general specifications, and the quadrature method, for narrow bandpass and bandstop filters.

Chapter 11 presents a number of efficient realizations for IIR filters. For these filters, a number of realizations considered efficient from the finite-precision effects point of view are presented and their salient features are discussed in detail. These realizations will equip the reader with a number of choices for the design of good IIR filters. Several families of structures are considered in this chapter, namely: parallel and cascade designs using direct-form second-order sections; parallel and cascade designs using section-optimal and limit-cycle-free state-space sections; lattice filters; and several forms of wave digital filters.

In Chapter 12, the most widely used implementation techniques for digital signal processing are briefly introduced. This subject is too large to fit in a chapter of a book; in addition, it is changing so fast that it is not possible for a textbook on implementation to remain up to date for long. To cope with that, we have chosen to analyze the most widely used implementation techniques which have been being employed for digital signal processing in the last decade and to present the current trends, without going into the details of any particular implementation strategy. Nevertheless, the chapter should be enough to assist any system designer in choosing the most appropriate form of implementing a particular digital signal processing algorithm.

This book contains enough material for an undergraduate course on digital signal processing and a first-year graduate course. There are many alternative ways to compose these courses; however, we recommend that an undergraduate course should include most parts of Chapters 1, 2, 3, and 4. It could also include the non-iterative approximation methods of Chapters 5 and 6, namely, the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods, and also the continuous-time to discrete-time transformation methods for IIR filtering of Chapter 6. At the instructor's discretion the course could also include selected parts of Chapters 7, 8, 10, and 11.

As a graduate course textbook, Chapters 1 to 4 could be seen as review material, and the other chapters should be covered in depth.

This book would never be written if people with a wide vision of how an academic environment should be were not around. In fact, we were fortunate to have Professors L. P. Calôba and E. H. Watanabe as colleagues and advisors. The staff of COPPE, in particular Mr M. A. Guimarães and Ms F. J. Ribeiro, supported us in all possible ways to make this book a reality. Also, the first author's early students, J. C. Cabezas, R. G. Lins, and J. A. B. Pereira (in memoriam) wrote, with him, a computer package that generated several of the examples in this book. The engineers of CPqD helped us to correct the early version of this text. In particular, we would like to thank the engineer J. Sampaio for his complete trust in this work. We benefited from working in an environment with a large signal processing group where our colleagues

always helped us in various ways. Among them, we should mention Profs. L. W. P. Biscainho, M. L. R. de Campos, G. V. Mendonça, A. C. M. de Queiroz, F. G. V. de Resende Jr, and J. M. de Seixas, and the entire staff of the Signal Processing Lab. (www.lps.ufrj.br). We would like to thank our colleagues at the Federal University of Rio de Janeiro, in particular at the Department of Electronics of the School of Engineering, the undergraduate studies department, and at the Electrical Engineering Program of COPPE, the graduate studies department, for their constant support during the preparation of this book.

The authors would like to thank many friends from other institutions whose influence helped in shaping this book. In particular, we may mention Prof. A. S. de la Vega of Fluminense Federal University; Prof. M. Sarcinelli Fo. of Federal University of Espírito Santo; Profs. P. Agathoklis, A. Antoniou, and W.-S. Lu of University of Victoria; Profs. I. Hartimo, T. I. Laakso, and Dr V. Välimäki of Helsinki University of Technology; Prof. T. Saramäki of Tampere University of Technology; Prof. Y. C. Lim of National University of Singapore; Dr R. L. de Queiroz of Xerox Corporation; Dr H. S. Malvar of Microsoft Corporation; Prof. Y.-F. Huang of University of Notre Dame; Prof. J. E. Cousseau of Univerdad Nacional del Sur; Prof. B. Nowrouzian of University of Alberta; Dr M. G. de Siqueira of Cisco Systems; Profs. R. Miscow Fo. and E. Viegas of Military Institute of Engineering in Rio de Janeiro; Dr E. Cabral of University of São Paulo.

This acknowledgement list would be incomplete without mentioning the staff of Cambridge University Press, in particular our editors, Dr Philip Meyler and Mr Eric Willner, and our copy editor, Dr Jo Clegg.

The authors would like to thank their families for their endless patience and support. In particular, Paulo would like to express his deepest gratitude to Mariza, Paula, and Luiza, and to his mother Hirlene. Eduardo would like to mention that the sweetness of Luis Eduardo and Isabella, the continuing love and friendship from his wife Cláudia, and the strong and loving background provided by his parents, Zélia and Bismarck, were in all respects essential to the completion of this task. Sergio would like to express his deepest gratitude to his parents, Sergio and Maria Christina, and his sincere love to Luciana and Bruno. All the authors would also like to thank their families for bearing with them working together.

Paulo S. R. Diniz Eduardo A. B. da Silva Sergio L. Netto

Contents

	Pre	eface	page x
	int	roduction	Î
1	Dis	screte-time systems	5
	1.1	Introduction	5
	1.2	Discrete-time signals	6
	1.3	Discrete-time systems	9
		1.3.1 Linearity	9
		1.3.2 Time invariance	10
		1.3.3 Causality	10
		1.3.4 Impulse response and convolution sums	12
		1.3.5 Stability	14
	1.4	Difference equations and time-domain response	15
	1.5	Sampling of continuous-time signals	19
		1.5.1 Basic principles	20
		1.5.2 Sampling theorem	20
	1.6	Discrete-time signals and systems with MATLAB	29
	1.7	Summary	30
	1.8	Exercises	30
2	The	z and Fourier transforms	36
	2.1	Introduction	36
	2.2	Definition of the z transform	37
	2.3	Inverse z transform	43
		2.3.1 Computation based on residue theorem	45
		2.3.2 Computation based on partial-fraction expansions	49
		2.3.3 Computation based on polynomial division	51
		2.3.4 Computation based on series expansion	52

	2.4	Properties of the z transform		53
		2.4.1 Linearity		53
		2.4.2 Time-reversal		54
		2.4.3 Time-shift theorem		54
		2.4.4 Multiplication by an exponential		55
		2.4.5 Complex differentiation		55
		2.4.6 Complex conjugation		56
		2.4.7 Real and imaginary sequences		56
		2.4.8 Initial value theorem		57
		2.4.9 Convolution theorem		57
		2.4.10 Product of two sequences		58
		2.4.11 Parseval's theorem		59
		2.4.12 Table of basic z transforms		60
	2.5	Transfer functions		60
	2.6	Stability in the z domain		63
	2.7	Frequency response		66
	2.8	Fourier transform		72
	2.9	Properties of the Fourier transform		75
		2.9.1 Linearity		75
		2.9.2 Time-reversal		75
		2.9.3 Time-shift theorem		76
		2.9.4 Multiplication by an exponential		76
		2.9.5 Complex differentiation		76
		2.9.6 Complex conjugation		76
		2.9.7 Real and imaginary sequences		76
		2.9.8 Symmetric and antisymmetric sequences		77
		2.9.9 Convolution theorem		78
		2.9.10 Product of two sequences		78
		2.9.11 Parseval's theorem	•	78
		Transfer functions with MATLAB	•	79
		Summary		81
	2.12	Exercises	•	81
}	Disc	rete transforms	:	85
	3.1	Introduction) F
	3.1	Discrete Fourier transform		35
	3.3	Properties of the DFT		36
	٥.5	3.3.1 Linearity)2
		3.3.2 Time-reversal		93
		3.3.4 Time-reversal	9	93

		3.3.3 Time-snift theorem	9.
		3.3.4 Circular frequency-shift theorem (modulation theorem)	94
		3.3.5 Circular convolution in time	95
		3.3.6 Correlation	96
		3.3.7 Real and imaginary sequences	97
		3.3.8 Symmetric and antisymmetric sequences	97
		3.3.9 Parseval's theorem	99
		3.3.10 Relationship between the DFT and the z transform	99
	3.4	Digital filtering using the DFT	100
		3.4.1 Linear and circular convolutions	100
		3.4.2 Overlap-and-add method	105
		3.4.3 Overlap-and-save method	108
	3.5	Fast Fourier transform	109
		3.5.1 Radix-2 algorithm with decimation in time	112
		3.5.2 Decimation in frequency	121
		3.5.3 Radix-4 algorithm	122
		3.5.4 Algorithms for arbitrary values of N	128
		3.5.5 Alternative techniques for determining the DFT	129
	3.6	Other discrete transforms	130
		3.6.1 Discrete cosine transform	130
		3.6.2 A family of sine and cosine transforms	134
		3.6.3 Discrete Hartley transform	135
		3.6.4 Hadamard transform	137
		3.6.5 Other important transforms	138
	3.7	Signal representations	138
	3.8	Discrete transforms with MATLAB	141
	3.9	Summary	143
	3.10) Exercises	144
4	— Dig	ital filters	148
	4.1	Introduction	140
	4.2	Basic structures of nonrecursive digital filters	148
	7.2	4.2.1 Direct form	148
		4.2.2 Cascade form	149
		4.2.3 Linear-phase forms	151
	4.3	Basic structures of recursive digital filters	151
	4.3	4.3.1 Direct forms	159
		4.3.2 Cascade form	159
		4.3.2 Cascaut IOIII	162

		4.3.3 Parallel form	163
	4.4	Digital network analysis	165
	4.5	State-space description	170
	4.6	Basic properties of digital networks	171
		4.6.1 Tellegen's theorem	172
		4.6.2 Reciprocity	173
		4.6.3 Interreciprocity	174
		4.6.4 Transposition	175
		4.6.5 Sensitivity	175
	4.7	Digital filter forms with MATLAB	180
	4.8	Summary	184
	4.9	Exercises	184
5	FIR	R filter approximations	188
	5.1	Introduction	188
	5.2	Ideal characteristics of standard filters	189
		5.2.1 Lowpass, highpass, bandpass, and bandstop filters	189
		5.2.2 Differentiators	190
		5.2.3 Hilbert transformers	192
		5.2.4 Summary	194
	5.3	FIR filter approximation by frequency sampling	194
	5.4	FIR filter approximation with window functions	202
		5.4.1 Rectangular window	205
		5.4.2 Triangular windows	205
		5.4.3 Hamming and Hanning windows	206
		5.4.4 Blackman window	207
		5.4.5 Kaiser window	209
		5.4.6 Dolph-Chebyshev window	216
	5.5	Maximally flat FIR filter approximation	219
	5.6	FIR filter approximation by optimization	222
		5.6.1 Weighted-least-squares method	228
		5.6.2 Chebyshev method	229
		5.6.3 WLS-Chebyshev method	235
	5.7	FIR filter approximation with MATLAB	240
	5.8	Summary	246
	50	Exercises	248

6		R filter approximations	254
	6.	1 Introduction	254
	6.2	2 Analog filter approximations	255
		6.2.1 Analog filter specification	255
		6.2.2 Butterworth approximation	256
		6.2.3 Chebyshev approximation	258
		6.2.4 Elliptic approximation	261
		6.2.5 Frequency transformations	264
	6.3	Continuous-time to discrete-time transformations	274
		6.3.1 Impulse-invariance method	274
		6.3.2 Bilinear transformation method	278
	6.4	Frequency transformation in the discrete-time domain	285
		6.4.1 Lowpass to lowpass transformation	285
		6.4.2 Lowpass to highpass transformation	286
		6.4.3 Lowpass to bandpass transformation	286
		6.4.4 Lowpass to bandstop transformation	287
		6.4.5 Variable cutoff filter design	288
	6.5	Magnitude and phase approximation	288
		6.5.1 Basic principles	289
		6.5.2 Multi-variable function minimization method	293
		6.5.3 Alternative methods	296
	6.6	Time-domain approximation	298
	6.7	IIR filter approximation with MATLAB	301
	6.8	Summary	307
	6.9	Exercises	307
7	Fini	ite-precision effects	310
	7.1	Introduction	310
	7.2	Binary number representation	310
		7.2.1 Fixed-point representations	310
		7.2.2 Floating-point representation	312
	7.3	Product quantization	313
	7.4	Signal scaling	319
	7.5	Coefficient quantization	326
		7.5.1 Deterministic sensitivity criterion	326
		7.5.2 Statistical forecast of the wordlength	330

	7.6	Limit cycles	333
		7.6.1 Granular limit cycles	334
		7.6.2 Overflow limit cycles	335
		7.6.3 Elimination of zero-input limit cycles	337
		7.6.4 Elimination of constant-input limit cycles	345
		7.6.5 Forced-response stability of digital filters with nonlinearities	
		due to overflow	347
	7.7	Summary	351
	7.8	Exercises	351
8	 Mul	tirate systems	354
	 8.1	Introduction	354
	8.2	Basic principles	354
	8.3	Decimation	355
	8.4	Interpolation	360
		8.4.1 Examples of interpolators	364
	8.5	Rational sampling-rate changes	364
	8.6	Inverse operations	365
	8.7	Decimation and interpolation for efficient filter implementation	365
		8.7.1 Narrowband FIR filters	366
		8.7.2 Wideband FIR filters with narrow transition bands	368
	8.8	Multirate systems with MATLAB	371
	8.9	Summary	373
	8.10	Exercises	374
9	— Filte	er banks and wavelets	375
	 9.1	Introduction	375
	9.2	Filter banks	375
		9.2.1 Decimation of a bandpass signal	376
		9.2.2 Inverse decimation of a bandpass signal	377
		9.2.3 Critically decimated <i>M</i> -band filter banks	378
	9.3	Perfect reconstruction	380
		9.3.1 Noble identities	380
		9.3.2 Polyphase decompositions	381
		9.3.3 Commutator models	382
		9.3.4 <i>M</i> -band filter banks in terms of polyphase components	383
		9.3.5 Perfect reconstruction <i>M</i> -band filter banks	385
		9.3.6 Transmultiplexers	389

	11.1 Introduction	491
1	Efficient IIR structures	491
	TO.9 Exercises	488
	10.8 Summary 10.9 Exercises	487
	10.7 Efficient FIR structures with MATLAB	485
	10.6.4 Quadrature approach	479
	10.6.3 Frequency response masking approach	467
	10.6.2 Interpolation approach	464
	10.6.1 Prefilter approach	460
	10.6 Realizations with reduced number of arithmetic operations	460
	10.5 Recursive running sum form	459
	10.4 Frequency-domain form	459
	10.3 Polyphase form	457
	10.2.1 Filter banks using the lattice form	455
	10.2 Lattice form	453
	10.1 Introduction	453
10	Efficient FIR structures	453
	9.13 Exercises	450
	9.12 Summary	449
	9.11 Filter banks and wavelets with MATLAB	442
	9.10.7 Examples	441
	9.10.6 Regularity	439
	9.10.5 Relation between the wavelets and the filter coefficients	438
	9.10.4 Relation between $x(t)$ and $x(n)$	437
	9.10.3 Scaling functions	429
	9.10.2 Wavelets	429
	9.10.1 Hierarchical filter banks	427 428
	9.10 Wavelet transforms	422
	9.9.1 Fast algorithms and biorthogonal LOT 9.9.2 Generalized LOT	420
	9.9 Lapped transforms	410
	9.8 Cosine-modulated filter banks	401
	9.7 Block transforms	399
	9.6 CQF filter banks	397
	9.5 QMF filter banks	394
	9.4 General 2-band perfect reconstruction filter banks	390