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PREFACE

This book presents the central ideas of applicable functional analysis
in a vivid and straightforward fashion with a minimum of fuss and
formality.

The book was developed while teaching an upper-division course
in non-linear functional analysis. My intention was to give the
background for the solution of nonlinear equations in Banach Spaces,
and this is at least one intention of applicable functional analysis. This
course is designed for a one-semester introduction at post-graduate
level. However, the material can easily be expanded to fill a two
semester-course.

To clarify what I taught, I wrote down each delivered lecture. The
prerequisites for this text are basic theory on Analysis and Linear
Functional Analysis. Any student with a certain amount of mathematical
maturity will be able to read the book.

The material covered is more or less prerequisite for the students
doing research in applicable mathematics. This text could thus be used
for an M.Phil. course in the mathematics.

The preparation of this manuscript was possible due to the excellent
facilities available at the Technomathematics Research Foundation,
Kolhapur. I thank my colleagues and friends for their comments and
help.

I specially thank Mrs. Achala Sabne for the excellent job of preparing
the camera ready text.

Most of all, I would like to express my deepest gratitude to Rupali,
my wife, in whose space and time this book was written.

R. AKERKAR
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Chapter 1
CONTRACTION

1.1 Banach’s Fixed Point Theorem

Let (X,d),(Y,d) be metric spaces. A mapping F : X = Y
is said to be Lipschitz continuous, if there exists a constant
k > 0, such that for all zy,z; € X

d(F(21), F(za)) < k.d(z1,%3).
F is called a contraction, if for all z;,z, € X, ) # T3
d(F(z1), F(z3)) < d(z1,73).

F is called a strict or a k-contraction, if F is Lipschitz con-
tinuous with a Lipschitz constant k < 1.

fXCY,F:X —Y,then £ € X is called a fixed point
of F, i F(&) = &.

If an equation

H(z) =y (1.1)

is to be solved, where H : U — X is a continuous mapping from
a subset U of a normed space X into X, then this equation can

be transformed in a fixed point problem :

1



2 Nonlinear Functional Analysis

Let T : X — X be an injective (linear) operator, then (1.1)
is equivalent to

TH(z) = Ty
z = z—TH(z)+ Ty
hence
r = F(z) ' (1.2)

where F(z) =z — TH(z) + Ty.

The (unique) fixed point z of (1.2) is a (the unique) solution
of (1.1), since T is injective. T can be chosen, such that some
fixed point principles are applicable. Now we will start with the

most important fixed point theorem.

Theorem 1.1 (Banach’s Fized Point Principle)
Let X be a complete metric space. Let F : X — X be a
k-contraction with 0 < k < 1, t.e

V 21,22 € X d(F($1),F(x2)) < k.d(xl,.’tg).

Then the following hold
1° There erists a fized point & of F.

20 This fized point is unique.

30 Ifzg € X is arbitrarily chosen, then the sequence
(z,), defined by T, = F(za-1) converges to Z.

49 For all n the error estimate is true

d(mn,xn 1) S kd(mhzo)-

k
d(zn, %) < =%
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Proof :
For 2y € X we have

d(Tn41,Tn) = d(F(2n), F(Tn-1)) < k.d(Tn,ZTn-1)
<... < k"d(z1,0)

and
A(ZTnt41,%n) < A(Trtjtts Tntg) + oo+ A(Tnt1, Tn)
< (Kt + .. +k).d(zn, Tnoi)
< 1—fE.d(zn, Tn-1)
< lk_nk.d(zl, Zo).

Since k < 1, the sequence (z,) is a Cauchy sequence. Since X

is complete, lim z,, = & exists. By continuity of F', we have
F(Z) =lim F(z,) = limzy4, = £,

hence % is a fixed point of F.
If £ is a fixed point of F, then

d(%,%) = d(F(%), F(%)) < k.d(%,2

implies Z = Z (k is less than 1!) and we obtain the error esti-

mates by
. R k
jlglgod(zn+j—l,zn) = d(&,z,) < m'd(xmxn—l)
kn
< m-d(-’fl,-’ﬂo)-

a
This theorem meets all requirements for a useful mathemat-
ical statement: Existence, Uniqueness, Construction and Error

Estimate.



4 Nonlinear Functional Analysis

If not necessarily F' itself, but almost all iterates
F™ = FoF™!
are ky-contractions, we obtain the following result.

Theorem 1.2 Let X be a complete metric space, for F': X —
X we assume:

There exists a sequence (ky) of positive reals, such that for
allz,ye X

d(F "z, F'y) < knd(z,y)
Yk, < o0.
Then F has a unique fized point £, and £ = limz, = limF™(zo)
with
d(:r,.,a”:) < Zk,-.d(a:l,a:o).

j2n
Proof :
This proof is analogous to the proof of Theorem 1.1.

< d(Tnsjs1, Tnts) + o+ A(Tnt1,Zn)
< d(FHigy, F*Yizg) + ... + d(Fzy, F'zo)
S (kn+J' + ...+ kn).d(Zl,on).

A(Tn+j+1s Tn)

Thus, (z.) is a Cauchy sequence. Let £ = limz,, then
F(z) = lim F(zn) = limZn41 = %, i.e. & is fixed point; if &
is a fixed point of F, so  is a fixed point for all F", hence

d(F"%,F"%) < kn.d(Z,%),
implies # = %, since k, < 1 for almost all n and

d(%,z,) < jlim ATt i1, Tn) < Y kj.d(21, To)- o
e i>n
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If F is just a eontraction, then F' does not necessarily have
a fixed point:

Let X = [0,00) and F : X — X be defined by

F(x)=x+;417176$, but

F(z)=F(y) = F'(§)(z-y) = [1 - U_J:W] (z—y)
ie. 1= e < 1, thus, if z # ,

|F(z) — F(y)| < |z —yl-

If we additionally assume that (X,d) is a compact metric space,

then we obtain the following result.

Theorem 1.3 Let X be a compact metric space, F: X — X a
contraction. Then F has a unique fized point and £ with
& = limzy,, Tp=F(Zp-1),%0 € X.

Proof :
Since X is compact, the sequence (F(z,)) has a convergent
subsequence (F(zn,;)). Let

g = }1!2) F(I,,’.),

then

F(£) = lim F(zn;+1)-

j
If £ # F(&), there exist disjoint closed neighbourhoods U of &

and V of F(£). The mapping

d(F(z), F(y))

p:UxV =R, plz,y)= i(z.9)
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is continuous, and attains its maximum k < 1. Let p € N, such
that for j > p

F(zﬂj) € U’ F(xﬂj+1) eV.

Then
d(F(Zn;+2), F(Zn;41)) < k.A(F(Tn;41), F(zn,))
and
d(F($n),F($h+1)) S d(F(:Dm),F(Zm+1))
for n > m.

Hence for j > p

d(F(an),F(xnj+1)) d(F(an-1+1)vF(xnj-1+2))
k.d(F(Zn;_,), F(Tp;_,41)) < -
kP d(F(Zny41); F(Tny42))

k. d(F(Tp,), F(En,41))-

IANIN IN A

Therefore
d(8, F(2)) = Jim d(F(@n,), F(tn, ) = 0.

This contradiction shows that Z is a fixed point of F. The
uniqueness follows from the contraction property. Finally, we

will show £ = lim z,,. This follows from
d(#, F(tn;1)) = d(FM(2), F*(F(ga,))) < (3, F(zn,)).

a
The following example shows that there exist contractions

on compact spaces, which are not strict:
Let F: [-1,0] = [-1,0] be defined by F(z) = z + z*.
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Then

Flz)-F(y) = z+28—y-y’=z—-y+(z+y)(z—y)
= (1+z+y)(z-y).

If £ # y, then |1 + z + y| < 1, but there is no k < 1, such that
|F(z) — F(y)| < klz -yl

As an application of Banach’s fixed point theorem we will
consider the following nonlinear Volterra integral equation

z(t) - Jo k(t, 7, 2(7))dr = y(t). (*)
Assume the function
k:[0,1]x[0,1]] xR —-R

is continuous and fulfills the following Lipschitz condition: there
is a y > 0, such that for all t,7 € [0,1], 1,8 € R

lk(t,7,7) — k(t, 7, 8)| < vlr — 3.
Then the mapping F, defined by
Fa)(t) = [ *k(t, T, z(r))dr
(z) - o ' Ty IL‘(

maps C[0,1] into C[0,1]. As the complete metric space we
choose (X,d) = (C[0,1],d,) with

-2
dq(.’l,'l,:tg) = gxsltas)& I.’El(t) - Ez(t)le 7,
Then F: X - X and Fisa %-contraction.

max |F(z1(t)) — F(z2(t))|e”>
max /ot |k(t, 7, 21(T)) — k(t, T, 72(7))|dT.e*"

dy(F(z1), F(z2))

IA
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IN

¢
max/(; Y|z (1) — 22(7)|e" 2" dT. 72"

IA

¢
d.(z1, T2).7y. max / e dr.e?m
'Y( 1, 2)7 0<t<1 Jo

IA

1
d7($1,1'2).’7.2—7 maxe—z‘ﬂ(e2'yt _ 1)

1 .
< §d7(x1,x2).

By Banach'’s fixed point theorem we have the following result.
The Volterra integral equation (*) has for every continuous

function y a unique continuous solution z.

Especially, we obtain the theorem of Picard - Lindelof :

The initial value problem
y =f(ty), y(0)=n (*)
with Lipschitz continuous f has a unique solution, since ( * )

is equivalent to

y©)=n+ [ frym)er.

In general operator F is defined on a subset U of the complete
metric space X or is a k-contraction only on a subset of X.
In such cases it is an additional problem to find  a subset
U, C U with the properties: F' maps Up into Up, and Up itself
is a complete metric space. A sufficient condition for such a

situation is described in the following result.

Theorem 1.4 Let (X,d) bea complete metric space. Let
Uc X and F:U — X be ak - contraction with k < 1. Let
2, € U,zp = F(z1) € U,r = £5d(21,72)- Let the closed ball
Uy := B(zq,7) C U. Then:

1. F maps U, into Up.
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2. F has a unique fized point £ € Uy and the sequence
(z4) = (F(zn-1)) converges to &.

Proof :

The closed subset Uy = B(z2,7) is complete. Let z € Up.
Then

d(F(x1$2))

d(F(z), F(z)) < k.d(z,71)
k(d(z,z2) + d(z2,71))
k(if—k +1).d(21,2))

T

IN

IN A

hence F : Uy — Uy and Theorem 1.1 applies.

1.2 The Resolvent Operator

Let X be a Banach space and U C X. Let F : U — X be a
continuous mapping. Let V C X be a subset, such that for all
y € V the equation

z—F(z)=y

has a unique solution . Then z can be represented by

z =y — R(y)

and the mapping R : V — X is said to be the resolvent oper-
ator to F.

In the case, where F is a contraction with Lipschitz constant
k < 1, the resolvent operator exists and is Lipschitz continuous,

too.
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Theorem 1.5 Let X be a Banach space and F : X — X be
Lipschitz continuous with Lipschitz constant k < 1. Then the
resolvent operator R to F ezists and has Lipschitz constant 1%&

Proof :
For every y € X the equation

z—-F(z)=y (11)
has a unique solution, since the operator Fp : X — X defined
by

Fy(z) = F(z) +y
is a k-contraction and has a fixed point £ € X. So a mapping

G : X — X with G(y) = z is defined. Let R(y) = y — G(y),
then

z=y- R(y) (1.2)
is the unique solution of equation (1.1). Let 31,3 € X and
z; — F(z;) = yj. Then
IR@) = R@)ll = llz1 — 31 = (32— w)ll = [|F(z1) = F(za)l|

< kllzy — 22|
< kllya = R(y2) — (2 — R(w))ll
< klly1 — g2l + k|| R(z1) — R(w2)l|

hence "
|R(31) — R(ze)ll m-“yl - vl|

The representation

z =y - R(y)
of the solution x of equation (1.1) shows that properties of R
determine the structure of the solution. We will illustrate this

fact by the following result.
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Theorem 1.6 Let X be a Banach space, F : U — X a contin-
uous operator and R : V — X its resolvent opeator. LetY C X
be a linear subspace, such that Range F C Y. Then Range
RcCY.

Proof :
From equations (1.1) and (1.2) it follows that

R(y) = —F(z) = -F(y - R(y)).

Thus Range R C Range (—F) CY.
O

Theorem 1.7 Let Q C R" be an open subset, X = C(R2). Let
k:Qx QxR — R, such that DZk(.,7,£) ezists for all a € N
with la| < v,7 € Q,6 € R. Then

F:cQ) - C(Q)

defined by

(Fz)(t) = /n k(t, 7, 2(r))dr
maps C(R) into the subspaces C*() C C(Q) of v - times dif-
ferentiable functions. If further the resolvent operator R to F
ezists, then the solution x of an equation

z—F(z)=y

y € C(R), has the property z —y € C*(Q).
1.3 The Theorem of the Local
Homeomorphism

The strongest version of the solution of the equation

F(z)=y



