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PREFACE

The present volume is the second to grow out of a Lock-
heed-sponsored symposium on magnetohydrodynamics. That second sym-
posium was held at the Palo Alto laboratory of the Missile Systems
Division on Deceniber 16, 1957.

The general remarks of the Preface to the first volume concerning the
intent of both the symposium and the book still dpply. The changed title
reflects the much wider interest in phenomena involving plasmas rather
than liquid metals. Actually, all papers presented dealt with plasmas.

For large values of the temperature, electrons and ions travel quite
long distances before the cumulative effect of collisions. becomes appre-
ciable. Some configurations of importance which are discussed in Sec-
tion 1 can for this reason be studied best through an individual orbit
analysis. Anyone whp would rather avoid the complicated averaging pro-
cedure which relates particle orbits and electrical currents will welcome
‘the derivation of a modified macroscopic theory which gets around contra-
dictions with the individual orbit analysis. ;

The use of magnetic fields appears to be the most promising means for
confining ‘a hot deuterium plasma long enough to produce controlled
thermonuclear power. However, the interface between a plasma and a
magnetic field tends to be unstable. In Section 2 evidence is presented for
such an instability from both pinch effect studies and astrophysical obser-
vations. It is cautioned that observed fusion reactions can and in some
cases must be interpreted as being due to instabilities rather than to a high
temperature. A discussion of the effectiveness of axial magnetic fields and
conducting walls to stabilize a pinch is followed by a theoretical study of
plasma confinement by radiation pressure. -

The tight coupling between magnetic field and plasma makes it pos-
sible to transfer energy from one to the other. Section 3 shows how high-
speed flow can be generated as well as modified by magnetic forces. Sev-
eral arrangements for magnetically driving shock waves are presented.
Effects which a magnetic field has on existing plasma flow, which are dis-
cussed in this section, include an observed channeling of a plasma stream
passing through an axial magnetic field and the effect of a transverse field



Preface

on drag and heat transfer deduced theoretically for simple viscous flow
patterns.

I wish to thank the speakers at the symposium for their cooperation in
preparing their papers for publication. I am also greatly indebted to
D. Bershader for reading parts of the manuscript and to J. Todd from the
LMSD publications staff for his valuable assistance in editipg the manu-
script and preparing it for publication.

Rorr K. M. LANDSHOFF
. Consulting Scientist,
»Lockheed Missile Systems Dwmon i ‘
Palo Alto, California :
April 1958
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ADIABATIC INVARIANTS IN THE MOTIONS
' OF CHARGED PARTICLES

S. CHANDRASEKHAR*

I. INTRODUCTION

In current treatments of plasma physics one often consid-
ers the motions of charged particles in varying magnetic fields in a so-called
guiding center approximation. In this approximation one separates the
spiraling motion of the charged particles about the lines of force, from the
motion along the lines of force. This separation of the motion into the two
parts is possible only so long as the magnetic field remains sensibly con-
stant, spatially, over several Larmor radii and, temporally, over several .
Larmor periods. When these latter conditions are fulfilled, one generally
supposes that the transverse kinetic energy (wy ) of the spiraling motion
divided by the strength of the magnetic field (B) remains constant during
the motion. This constancy of

_w_ my’

R o
is not strictly an integral of the equations of motion; it is an adiabatic
invariant in the sense that it is a constant in the limit of infinitely slow
variation of the field. :

If in virtue of the constancy of p, the particle should be trapped be-
tween: two regions of relatively strong field, then one supposes that the
integral :

* The Enrico Fermi Institute for Nuclear Studies, University of Chicago.
tIf W (=wy + 1y,) denotes the total kinetic energy of the particle, then the

_points between which the particle will be trapped will be determined by Bmax = W /p.
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of the component of the velocity parallel to the field taken over a complete
cycle is a further adiabatic invariant.* 4

In this paper we shall examine the precise. meaning which must be
attached to the notion of adiabaiic invariance with a view to clarifying the
limitations in its use in plasma physics.

II. THE NOTION OF ADIABATIC INVARIANCE

The notion of adiabatic invariance played an important role in the early
developments of the quantum theory in the context of formulating the
general rules of quantization. Historically, it arose from a question pro-
posed by Lorentz at the first Solvay Congress in 1911. Lorentz’s question
was: How does a simple pendulum behave when the length of the sus-
pending thread is gradually shortened? The relevance oi this question
for the quantum theory of the time was the following : If an oscillator has
originally the correct energy appropriate to an elementary quantum (hv),
would the energy suffice to make up a quantum-at the end of a process

V(x)

X
Fic. 1. Potential field with a barrier
*The conditions which must prevail in order that Eq. (2) may be an adiabatic

invariant are very much more stringent than those which must obtain for w, /B to
be an invariant (see Section XII).

P Y



Kinetic Theory 5

(such as shortening the length of a pendulum) in which the frequency has
been increased? To Lorentz’s question, Einstein furnished the correct
answer by saying that if the suspending thread is shortened infinitely
slowly, then the energy, E, will increase proportionately to the “instan-
taneous” frequency, v, so that a quantum of energy remains a quantum
of energy ; in other words, E/v is an adiabatic invariant. We shall pres-
ently return to a somewhat more precise formulation of what this adiabatic
invariance of E/v really means ; but it may be noted here, parenthetically,
that the invariance of E/v to slow changes was extended by Ehrenfest into
a general “adiabatic hypothesis” applicable to multiply periodic systems.

" In this paper we shall, however, be concerned with.adiabatic invariance
- as a concept in claslcal mechanics and, indeed, only for one-dimensional

systems.

III., THE ADIABATIC INVARIANCE OF THE ACTION INTEGRAL

Consider the motion of a particle (of unit mass) in a potential field

. V(x) (see Fig. 1). The equation governing its motion is

divi el .
- o
This equation allow§ the energy integral
Lfde N , !
—2_<:i?> + V/(x) = E = constant; - (4)
from this we deduce that A
: dx ;
t= ; ; . 5
: f (2[E =V (2)]} s

If two points x, and #, exist such that (see Fig. 1) !
E=V(x) =V (s) (#:>x), (6)

then the particle will oscillate between #; and x,; and the period of the ¥
oscillation will be given by

st g = g% S
r, CIE=V(#x)]} 2[E =V (@) ]

Associated with such periodic motions one defines the action integral

J=g3dx{2[5— V(o)) = @dx(%). (8)
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Suppose that V' (#) depends (apart from x) on a set of parameters a;

(=1,...,n) such that
V(2) =V (50 ..,8,)." gt - o

Now let the a;’s mstead of bemg constants be slowly varying functions of

- time. “Slowly varying” in this connection means that the particle executes
several oscillations (appropriate to a set of a;’s which occur) before any
- of the aj’s change appreciably ; in other words, we require:

1 : ; ’
—_ (=t )y, . 10
S =l (10)

1 da;
a; dt

When this is the case, we may characterize the motion by a certain energy,
E, appropriate for a single oscillation, namely,

E:é%[J(j:)—i—V(x a1,.,a.,)] / %{
=¢dt[~;—<‘2’:>+V(x O ,a,.)] / ¢‘dt.

It will be observed that in defining E in this way, we are averaging the ‘en-

(11)

_ergy durmg an oscillation, weighting each element of the orbit by the frac- -

tion of the time the particle spends in that element.
The theorem on adiabatic invariance is to the effect that the action
. tntegral,

J=¢dx{2[Ef—V(x;al,...,a,,)]}*, (12)

defined in terms of E is a constant for infinitely slaw 'varzatwns of the aj’s.
The arguments by which one attempts to establish this constancy of J are,
essentially, as follows: \

We have..

dJ _ ardE s 9] do

dt ?E dt = 0ay dt’
|

(13)

i)

»
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On the other hand, from the definition of / we have

&f: v dx ]
R da; aa, (2 [E~= V3

and : ; - (14)

L SGRENG . T
> 2E WQRIE-V]} Y &’

while from the definition of E we have

dE dr d*x | OV dx | & OV da; "k
Loy dtliz A A dt: " (15)
dt ¢ [dtdt axdt+,-z—:1-aa,‘dt:|/¢ L

Making use of the equation of motion govemmg x, we can reduce the fore-

going equation to the £orm
=250 at
aa,

(16)
doy; LoV dx dx '
g o 24, (2 [E— V) / i
Combining Egs. (13), (14), and (16), we have
= da gi v . dr
L:d da; {2 [E —V]}} ’
/ : - (17)

s ):'dﬂ gl e
i St Yo 2[E—V]) -

which establishes the constancy of J.

IV. ADIABATIC INVARIANCE IN THE SMALL AND IN THE LARGE

The proof of the constancy of the action intégral given in Section ITI,
for slow changes in the parameters which occur in the potential function,
contains many heuristic elements.” For example, the proof at fio stage in- '
volved any explicit estimate of the error involved in the concept of E and
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of the action integral defined in terms of it. Indeed, the - notion of adiabatic
invariance was taken as equivalent to a justification of E and J as defined.

‘This is not altogether satisfactory ; and we shall accordingly try to formu-

late more explicitly the conceptual prerequisites underlying the notion of
adiabatic invariance. In order that we may clarify the essential physical
concepts without any of the formal complexities which a completely gen-
eral formulation will require, we shall consider the relevant questions ex-
plicitly in the context of Lorentz’s original problem and leave the gener-
alizations to the reader.

Consider then the equation of motion of a simple pendulum. We have

ﬁ * 4ot =0, (18)

where o denotes the circular frequency. If w is a constant, the general solu-
tion of this equation can be written as

x = A cos (ot + ¢), (19)

where 4 and € are constants. From this solution it follows that
<1 = 14 A** 5 <x?> Ay (20)
and, further, that _
E = (< + w*art} = 14 A%0? (21)

The adiabatic invariance of the action integral as applied to this problem
states the following :

Let o, instead of being a constant, be a slowly varymg function of time
such that

ldo
<< . : 22
‘ wdt o
For such slow variations
E/w is a constant. (23)

If one wants to formulate the principle of adiabatic invariance without any
of the heuristic eléements implied in the forgeoing statement, then it would
appear that the physical premises should be restated somewhat differently.

Clearly, the concepts of energy and period taken over from the case
when w is a constant cannot strictly apply to a dynamical system in which
 is some function of time no matter how slowly varying. They can apply
only if certain limiting conditions are satisfied. Thus, let ® (¢) be a func-
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tion of time such that ,
w () >w,ast—> —o,
and (24)

w (t) >wsast—> 40 ;

and also that
dﬂ
dt"

-0 ast—>+oo andt—»—ow foralln>=>1. (25)

When these conditions are satisfied, the system is a simple harmonic oscil-
lator. in the strict sense, both when t— — o and when ¢t — 4. Ac-
cordingly, <x*s can be defined uniquely for both these limits and we may
consideér the ratio

;\': (02 (-r“)t—>+rx;. (26)

() e e o

This will clearly depend on the manner in which ® varies between w, and .
o,. Let dw/dt be bounded and

1do| 1 '

o) TASRE S SR e S (27)

Maximum of e
- o dt I

A precise statement of the theorem on adiabatic invariance would be the
assertion :
L—>1 as T — . (28)

The remarkable aspect of this assertion is that it is not restricted by any
limitation on w,/m,. Nevertheless, it will be convenient to distinguish two
cases: the case when

5_A ceals (29) ;

,
and when no such restriction applies. If, in the former case, we can show
that :
A=14+0(%) as To o, (30)
then we shall say that we have adiabatic invariance in the small. If on the

other hand, Eq. (28) holds with no restriction on ./, we shall say that
we have adiabatic invariance in the large.
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The ‘principle of adiabatic invariance in the large can be formulated
somewhat differently as follows: Let

w=o(af) (31)

represeﬁt a one-parameter family of time variations satisfying the require-
ments (24) and (25). For such a family of time variations, A defined as

in Eq. (26) will depend on a; and adiabatic invariance in the large implies

that ;
A(0,w;0)>1 as a—0, (32)

independentiy of ®; and w,.
It is clear that the foregoing ideas formulated in the context of
- Lorentz’s original problem can be extended to include the more general
problem considered in Section III."

- V. THE RELATION OF THE ADIABATIC INVARIANCE OF % /B TO THE
INVARIANCE OF ® <|#|?> IN THE PENDULUM PROBLEM

Before discussing in some detail the adiabatic invariance of o <||?
in the problem of the simple pendulum, it will be useful to relate thi$ prob-
lem to the invariance of w;,/B in the motion of a charged particle in a
varying magnetic field. ‘

With the substitution

L= rexp(—ifwadt), ' (33)
the equation
L AN (34)
dr? 3%
becomes
a°C e gl S elto
2i0 — =10 35
P iR (33)

and this is the equation of motionf of a charged particle in a spatially uni-
form but a temporally varying magnetic field, if we identify 2w as the
Larmor frequency (= eB/mc) and the real and the imaginary parts of {
(regarded as a complex variable) ‘as the Cartesian coordinates of the par-

ticle in a plane normal to the lines of force. The transverse kinetic energy

divided by the instantaneous strength of the field is, apart from constant
factors of proportionality, given by

'l[i@ e :

dr x
— — wx
dt

(36)

w | dt gy

-



