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Preface

This book is the outcome of several courses and seminar talks held at
the Instituto de Matematica Pura e Aplicada (IMPA) over the years.
It is a greatly modified version of a previous work by the authors,
Equagées Diferenciais Parciais, Uma Introdugao, (Projeto Euclides, IMPA,
1978). It has a twofold purpose, namely to introduce the student to the
basic concepts of Fourier analysis and provide illustrations of recent
applications where these concepts were used to study various properties
of the solutions of some important nonlinear evolution equations.

The text is divided into three parts. The first one, containing Chapters
1 to 3, deals with Fourier series and periodic distributions. Chapters 4 to
6 belong to the second part, which contains applications of Fourier series
and periodic distributions to partial differential equations. Chapters 7 and
8, in the third part, are more advanced and deal with some nonperiodic
problems.

Chapter 1 presents some very classical material on PDEs, such as
classification into types, separation of variables and maximum principles
for the heat and Laplace equations. It is by no means a comprehensive
account of such topics. Rather, it's purpose is to establish the basic
language used throughout the work and to provide a collection of def-
initions and results needed in the remainder of the book. The following
two chapters deal with Fourier series and some of its applications, first in
a classical setting and then in the scenario provided by 2, the space of
periodic distributions. We include some general topological concepts that
will be needed later on, and introduce L2-type periodic Sobolev spaces
using the fact that the Fourier transform is an isomorphism from &
onto the collection of all complex sequences of slow growth. In this way
we reduce all our considerations to spaces of sequences and thus avoid
the use of the Lebesgue integral until very late in the game. Chapter 4

ix



X Preface

concentrates on applications of the theory developed in the preceding
chapters to linear evolution equations. We study a large number of such
objects, including the heat, (free) Schrodinger and the wave equations.
Although the chapter is interesting in its own right, its main purpose is to
lay the groundwork for the applications to nonlinear evolution equations
given in Chapters 5 and 6. We have included, for completeness’ sake,
a section summarizing the basic theory of semigroups of operators. Its
purpose is to provide an abstract point of view for our treatment of
linear evolution equations. It can be skipped without consequence to the
understanding of the remainder of the text. Part Three addresses some
situations that do not occur in the periodic setting, such as well-posedness
in weighted Sobolev spaces and problems with initial conditions with ‘in-
finite mass’, that is, initial data that does not belong to L?(R). This is
done in Chapter 8. Chapter 7 discusses the basic concepts of the the-
ory of distributions, Sobolev spaces and presents applications to linear
evolution equations, with emphasis on the heat and Schrodinger equa-
tions. Here we lay the groundwork for the applications studied in the
final chapter. There are two appendixes. The first one summarizes the
ODE theory used in the text while the second describes some technical
commutator estimates needed to deal with the Korteweg—de Vries and
related equations.

As is almost always the case, the choice of the topics discussed in this
book is a direct consequence of the tastes and research interest of the
authors. We have refrained from the study of classical elliptic theory,
since there are many excellent works on the subject, and decided to
concentrate on linear and nonlinear evolutions equations. As mentioned
above, Lebegue’s theory of integration is needed only very late in the
book. The first point where it has to be used is in the proof of local-well-
posedness of the Korteweg—de Vries equation presented in section 3 of
Chapter 6. At that point we need Pettis’ theorem on weakly measurable
functions and the concept of absolutely continuous functions defined on
an interval with values in a Banach space. However, the reader who is
unfamiliar with these ideas may skip the section, because all the relevant
results are stated in Sections 1 and 2. In Part Three, it is no longer feasible
to avoid the theory of integration, and there we assume that the reader
is familiar with the essentials of the theory as presented in the books by
Bartle, Royden or Rudin, mentioned in the bibliography. We emphasize
that our avoidance of using Lebesgue integration is intended to make
most of the book available to advanced undergraduates or beginning
graduates that are still unfamiliar with the theory. In fact, familiarity
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with integration theory would enhance the understanding of the book,
and make it more pleasurable to read.

A final word about prerequisites. We assume that the reader is familiar
with the material usually covered in functional analysis courses, up to
the theory of compact operators. We also assume familiarity with the
basic theory of ordinary differential equations, more specifically with the
results presented in Appendix B.

Finally the authors wish to thank our friends Carlos Augusto Is-
nard (IMPA), Felipe Linares (IMPA) and Marcia Scialom (IMECC\
UNICAMP) for several interesting conversations on the subject matter
of this book and for reading various parts of the original manuscript. It
goes without saying that any mistakes found in the text are the authors’,
and only the authors’, responsibility. And last, but not least, our thanks
to the long suffering and patient David Tranah, of Cambridge University
Press, who gave us all the support we needed while writing this book.
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Preliminaries

In this chapter we present some basic definitions and some of the prob-
lems and concepts that will be discussed and used throughout the book.
The material presented here is by no means a complete account of such
topics as classification into types, canonical forms, the method of char-
acteristics and so on. There are several excellent accounts of these in the
literature (see [57], (60], [64], [86] and [151] for example).

1.1 Basic Definitions and Examples

Let us begin by introducing some notation and terminology. An open
ball of radius r > 0 centered at xp € R" is a set of the form

B(xo;r)={x € R": |x —xo! <r},

where xg is a fixed point in R”, || is the usual euclidean norm in R" and
r is a positive real number. Similarly, a closed ball in R” is a set of the
form B(xo;r) = {x € R" : |x — xo] < r}. A subset Q < R" is said to be
open if, for any x € Q, there exists an open ball B (x;r) contained in Q.
A subset K < R" is closed if its complement R"\ K = {x e R" : x ¢ K}
is open. The closure of S < R”, denoted by S, is the smallest closed set
containing S, i.e, $ =[1{K € R" : K is closed and S < K}. The interior
of § = R", denoted by Int(S), is the largest open set contained in S, that
is, Int (S) = {J{Q < R" : Qis open and Q < S). The boundary of § < R"
is the set 3§ = SN(R"\ §). It is easy to see that the closed ball B (xo;7) is
in fact the closure of the open ball B (xg;r), that the interior of the closed
ball B (xp;r) is the open ball B (xp;r) and that the boundary of both the
open and the closed balls is the sphere {x € R" : |x — xo| = r}. An open
subset O < R” is connected if there are no disjoint nonempty open sets
Q; and Q; in R" such that Q = Q, UQ,. An open connected subset of

3



4 1 Preliminaries

R" is called a domain. As usual, if Q = R" is an open subset, we denote
by C*(Q) the set of all functions @ — C that are k times continuously
differentiable. The support of a function f : Q — C, denoted by supp(f),
is the smallest closed set outside which f vanishes identically. We use
the notation C¢(Q) for the set of all functions Q — C that are k times
continuously differentiable and have compact support in Q. The set of
all complex valued infinitely differentiable functions on € is denoted by
C™(Q) and the set of all complex valued infinitely differentiable functions
with compact support in  is denoted by C§ (Q). If [a,b] = R is a closed
interval, C* ([a, b)) is the set of all functions f : [a,b] — C that are k times
differentiable in the closed interval with the kth derivative f‘k) € C(la,b));
the differentiability at the endpoints is defined by the one-sided limits

)= tim LR =1 (@

h=s0~ h ’
, . fb+h)~
f (b)=hli%‘—j( + }: fb)

We define in a similar way C*({a, <)) and C¥ ((—c0, b)), where a,b € R.
For infinitely differentiable functions we will use the notations C* ({a, b)),
C*([a,0)) and C* ((—oc, b]).

A differential equation (DE) is an equation involving one or more
independent variables, an unknown function, and its derivatives with
respect to these variables. If there is only one independent variable x,
we say that the equation is an ordinary differential equation (ODE). If
there are two or more independent variables, x, xa,. .., X,, we say that
the equation is a partial differential equation (PDE). Thus, an ODE is
an expression of the form

F(xuu,.. ,u™) =0 (L1)

where u/,...,ul™ denote the derivatives of u(x) with respect to x up to
order m in some open subset of R, while a PDE has the form

u_@_u_ Ei ¢tu  &%u 0™u
T0xyTT T 0xa’ OxE Ox10x" T éxm

G (xl,xz,... s X, ) =0, (L2

where x = (x3,x2,...,X,) belongs to some open set Q < R", F and G are

given functions, u is to be determined and
S ,

oo =ttt
oxfioxt . oxy "

denotes the jth order partial derivative of u. We will often use the
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following alternative notations.

" &u
5,(/14 =27k SHxjoxg -
cx*
J \w—/
k times

The above definitions are too general. It is easy to devise very strange
and useless equations like

exp (' (x)) =0

or
1
(W (x)* + u(x)

Thus, it is important to determine which equations are meaningful and
restrict one’s attention to those subclasses. In the remainder of this
section we will exhibit several examples of interesting equations that will
be considered in the course of the book.

The order of a partial differential equation is the order of the highest
order derivative occurring in the equation. If F and G are not constant,
when considered as functions of the derivatives of order m, then both
(1.1) and (1.2) have order m. A partial differential equation is linear if
it is a polynomial of the first degree in u and its derivatives. Otherwise,
the PDE is nonlinear. The most general second order linear PDE has the
form

< cu
Mz;ajk(x xEn jzg;bj(x)a+c(x)u(x)+d(x)—0, (1.3)

where at least one of the coefficients a (x) is not identically zero. If d = 0,
we say that (1.3) is homogeneous; otherwise (1.3) is nonhomogeneous. The
principal part of a PDE is the part of the equation that contains the
derivatives of highest order. In the case of (1.3), the principal part is
the double sum on the left hand side. Nonlinear equations with linear
principal parts are called semilinear. The general second order semilinear
PDE is

Z a f Eu du
i c‘x 6vck 1 ox,

Jk=1

The most important examples of linear equations are the following.
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ExaMpLE 1.1. The three classical equations of mathematical physics,
as follows.
e The heat equation

Gu(t,x) =a*Au(t,x), t>0,xe Qe R", (1.4)

where «? is a constant, known as the diffusion coefficient, and

=25

is the Laplacian (or Laplace operator) in R". This equation is associated
with diffusion phenomena, like the flow of heat in a conducting medium
(see [60], [114], [151] and [162]).

e The wave equation

Ghult,x) = c*Au(t,x), t >0, x e QS R™ (1.6)

(1.5)

Q)
\N

This equation describes wave phenomena, like the motion of a membrane
or waves traveling in a string. Here ¢ is a positive constant, known as
the speed of propagation of the wave (see [60], [114], [125] and [151]).

o Laplace’s equation

Au(x)=0, xe Q< R". (L7)

This equation describes stationary phenomena, such as the electrostatic
potential generated by fixed distributions of electric charges (see [60], (831,
[114], [151] and [155], for example). Note that the stationary (i.e. time
independent) solutions of the heat and wave equations satisfy Laplace’s
equation. Functions satisfying (1.7) are said to be harmonic in Q.

ExampPLE 1.2. The nonhomogeneous versions of the equations in Exam-
ple 1.1, that is,

du(t,X)=2Au(t,x)+f(,x), t>0,xeQcR", - (18)
a,zu(t,x)=c2Au(t,x)+g(t,x), t>0,xeQc R, (1.9)
Au(x)=h(x), xe Q< R", (1.10)

where f, g, and h are given functions. Equation (1.10) is known as
Poisson’s equation.

ExaMPLE 1.3. Schrodinger’s equation

R
iGou(t,x) = —,)—mAu(t,x) +Vx)ult,x), t>0,xe QcsR", (L.11)



