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Enzymatic tools for engineering natural product glycosylation

Sophie Blanchard and Jon S Thorson

Glycosylated natural products have served as reliable
platforms for the development of many existing front-line
drugs. In an effort to explore the contribution of the sugar
constituents of these compounds, research groups have
focused upon the development of chemical and enzymatic
tools to diversify natural product glycosylation. Among the
complementary routes available, in vivo pathway engineering,
also referred to as ‘combinatorial biosynthesis’, is an emerging
method that relies upon the co-expression of sugar
biosynthetic gene cassettes and glycosyltransferases in a host
organism to generate novel glycosylated natural products. An
overview of recent progress in combinatorial biosynthesis is
highlighted in this review, emphasizing the elucidation of
nucleotide-sugar biosynthetic pathways and recent
developments on glycosyltransferases.
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Introduction

Natural products are a reliable source of drug leads and
often contain sugar attachments that can influence a
compound’s specificity and pharmacology [1,2]. Thus,
there is an interest in developing chemical and enzymatic
tools to diversify natural product glycosylation patterns.
Because no single universal glycosylation tool exists,
accomplishing natural product glycodiversification will
continue to require an array of complementary tools.
To date, the strategies generally employed to create
libraries of glycosylated natural product variants include
total synthesis or semisynthesis [3°,4,5], glycorandomiza-
tion [6,7°°] and 7z vivo pathway engineering (often also
referred to as ‘combinatorial biosynthesis’) (Figure 1).
Combinatorial biosynthesis relies upon co-expression of
sugar biosynthetic gene cassettes and glycosyltransferases
in a host organism containing an endogenous or

exogenously delivered aglycon, to generate novel glyco-
sylated natural products. While chemical and enzymatic
strategies for glycorandomization have recently been
reviewed [8,9°°], this article focuses upon developments
within the past two years relevant to combinatorial bio-
synthesis. Specifically, we emphasize the elucidation of
nucleotide-sugar biosynthetic pathways — a critical first
step in the design of sugar biosynthetic gene cassettes —
and the discovery of novel promiscuous glycosyltrans-
ferases — the core catalysts for combinatorial glycosyla-
tion strategies.

Elucidation of nucleotide-sugar biosynthetic
pathways

Glycosylated natural products generally contain sugars
that are deoxygenated at C2, C3, C4 and/or C6. Because
the chemical synthesis of deoxyhexoses is difficult [10°],
understanding deoxyhexose biosynthesis is critical
to the glycodiversification of natural products [11].
The first two steps in deoxyhexose biosynthesis are
activation of a monosaccharide-1-phosphate by the
tandem NDP-hexose nucleotidylyltransferase/NDP-
hexose 4,6-dehydratase-mediated conversion to an
NDP-4-keto-6-deoxyhexose (Figure 2a; boxed) — the
immediate biosynthetic precursor of most deoxyhexoses
[11]. This species can undergo further enzymatic mod-
ifications before being transferred by a glycosyltransfer-
ase to an aglycon, where the sugar can be subjected to a
final array of tailoring enzymes [12,13]. These latter
modifications provide even more diversification to nat-
ural product glycosylation.

The pool of available nucleotide-sugars is increasing as
gene clusters of glycosylated natural products are discov-
ered and as new sugar biosynthetic pathways are eluci-
dated [14]. The past two years have seen significant
advances in the elucidation of biosynthetic pathways
for NDP-deoxvhexoses, NDP-deoxyaminohexoses, and
NDP-pentoses, as described below. Also, the iz vitro
reconstitution of the entire TDP-L-mycarose biosyn-
thetic pathway has been disclosed. Although the follow-
ing sections highlight recent developments, there remain
many novel nucleotide-sugar pathways to be elucidated
— promising the discovery of rich new enzyme-catalyzed
chemistry and a supply of exciting new combinatorial
glycosylation tools.

NDP-deoxyhexoses

The common NDP-4-keto-6-deoxyhexose (Figure 2a;
boxed) can undergo deoxygenation at C2, C3, and/or
C4. Surprisingly, the enzymatic deoxygenation at each
of these three positions proceeds via drastically different
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A glycosyltransferase gene toolbox and a nucleotide-sugar biosynthesis gene toolbox provide the basis for a general in vivo pathway engineering
strategy to generate novel glycosylated natural products. The aglycon can be fed to the host, or produced by the host strain itself. A variation

of this strategy incorporates organisms that already possess some of the genes necessary for the preparation of the nucleotide-sugar and/or

its transfer to the aglycon. GT, glycosyltransferase; NDP, nucleotide diphosphate.

mechanisms [15]. Whereas deoxygenation at C2 occurs
via B-elimination followed by hydride reduction, C3
deoxygenation occurs via an unprecedented pyridoxal
5'-phosphate (PLP)-dependent radical-based mechanism
[11,15]. In contrast, Liu and co-workers recently revealed
C4 deoxygenation to proceed via an amino sugar inter-
mediate (Figure 2b). Specifically, amino sugar 2, formed
via DesI-mediated transamidation of 1, was converted by
a newly characterized S§-adenosylmethionine (SAM)-
dependent deaminase Desll [16°], to form the corre-
sponding 4,6-dideoxyhexose (3). Hexose 3 was ultimately
converted to the C4-deoxygenated nucleotide-sugar
TDP-desosamine.

NDP-deoxyaminohexoses

Deoxyaminohexoses are found in many biologically active
natural products. ‘These sugars are generally formed from
keto sugars via standard aminotransferase-catalyzed
transamination reactions [17°]. Liu and co-workers
recently characterized SpnR as the aminotransferase in
the D-forosamine biosynthetic pathway [18], a pathway
that is particularly promising for combinatorial biosynth-
esis given the promiscuity of downstream tailoring
enzymes. In another NDP-deoxyaminohexose biosyn-
thetic study, Liu and co-workers found that "I'ylla, not

the previously postulated TyIM3, was required for the
isomerization of the canonical TDP-4-keto-6-deoxyhex-
ose intermediate (Figure 2¢; 1) in the synthesis of T'DP-D-
mycaminose [19]."I'yIM3 was subsequently shown to assist
the glycosyltransferase TyIM2 in catalyzing the transfer of
TDP-mycaminose to the aglycon (see below).

NDP-pentoses

Recent work from Bechthold and co-workers provided
additional insight into the genesis of the unusual pentoses
appended to a variety of secondary metabolites. In their
study, AviE2 from the avilamycin A biosynthetic pathway
was found to form UDP-p-xylose from UDP-b-glucuronic
acid via decarboxylation (Figure 2d) [20]. Such decarbox-
ylation reactions are common in pentose primary meta-
bolism; however, this was the first biochemical
characterization of a sugar decarboxylase from secondary
metabolism. A similar biosynthetic pathway for the deox-
ypentose moieties found in enediyne antitumor antibio-
tics was previously proposed based upon the biochemical
characterization of the UDP-glucose dehydrogenase
CalS8 [21]. Genes encoding homologs for these enzymes
have also recently been discovered in the indolocarbazole
Actinomadura melliaura A'T2433 gene cluster (Q Gao, ]S
Thorson, unpublished data).
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In vivo nucleotide-sugar biosynthesis. (a) A general biosynthetic route initiated by NDP-sugar formation, followed by multienzyme functionalization
and glycosyltransferase-catalyzed glycosylation of a natural product aglycon. The first stage (i) is catalyzed by a nucleotidylyltransferase and

a 4,6-dehydratase; the second stage (i) requires multiple enzymes, which may lead to deoxygenation, oxidation, epimerization, transamination
and ketoreduction (although not explicitly illustrated, alkylation can occur also at this stage); the third stage (i) is glycosyltransferase-catalyzed
transfer to the natural product aglycon; the sugar may be further modified after stage (iii) by additional enzymatic steps. (b) Proposed route for
C4 deoxygenation in the biosynthesis of TDP-p-desosamine. (c) The biosynthesis of TDP-p-mycaminose. (d) The hypothetical biosynthetic
pathway of UDP-L-lyxose is initiated by a UDP-glucose dehydrogenase (the biochemically characterized CalS8 from calicheamicin biosynthesis
is shown) followed by a UDP-glucuronic acid decarboxylase (the biochemically characterized AviE2 from avilamycin A biosynthesis is illustrated)
to give UDP-p-xylose. () Complete biosynthetic pathway of TDP-L-mycarose from tylosin producer Streptomyces fradiae. Glc, glucose; GIcA,
glucuronic acid; Lyx, lyxose; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NDP, nucleotide diphosphate; PLP, pyridoxal
5'-phosphate; SAM, S-adenosylmethionine; TDP, thymidine diphosphate; Xyl, xylose.

Reconstitution of NDP-sugar pathways

An understanding of the complexity of multistep bio-
synthesis 7z vivo and in vitro is essential to harness the
biosynthetic machinery necessary to produce ‘tailor-
made’ molecules and to extend structural diversity. Such
understanding was demonstrated when the entire biosyn-
thetic pathway of TDP-L-mycarose, one of the three
sugar components of the macrolide antibiotic tylosin,
was reconstituted iz vitro by Liu and co-workers [22].
Their experiments provided a critical basis from which to
assign roles for the key enzymes (TylC3, TylK and
TylC2) involved in 'TDP-L-mycarose biosynthesis
(Figure 2e). Although TylK and TylC2 demonstrated
moderate substrate flexibility, these two enzymes act
downstream from the highly specific enzyme TylC3,
the intolerance of which was postulated to limit the

diversity of products available via the tylosin biosynthetic
pathway.

Expanding the glycosyltransferase tool box

Generating glycosylated metabolites via combinatorial
biosynthesis relies upon access to an array of glycosyl-
transferase genes. Most glycosyltransferases are single
polypeptides; however, it was recently discovered that
the macrolide glycosyltransferase DesVII required an
auxiliary protein, Des VIII, for iz vitro and in vive activity
[23°°,24]. Since this seminal discovery, other pairs of
glycosyltransferases and activating proteins have been
discovered, such as AknS/AknT (aclacinomycin) [25],
TylM2/TyIM3 (tylosin) [26], and MycB/MydC (mycina-
mycin) [26]. Walsh and co-workers reported the activity of
the glycosyltransferase EryCIII to also be greatly
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enhanced by EryCII or AknT activation iz vitro; however,
once EryCIII was fully ‘activated’ it no longer required its
protein partner {27]. Although the mechanistic role of
activating proteins remains unclear [24], regardless of
whether they require an activating protein, secondary
metabolite-associated glycosyltransferases often exhibit
inherent substrate promiscuity toward acceptor substrates
and/or (deoxy)sugar donor substrates. As described below,
this inherent flexibility can be exploited to generate novel
glycosylated natural products.

Fiexibility toward aglycons

Glycosyltransferases can display significant flexibility
toward aglycons. One such glycosyltransferase is VinC
from Streptomyces halstedii HC-34, which accepts the sur-
prisingly diverse array of hydrophobic aglycons shown in
Figure 3a [28°]. The macrolide glycosyltransferases
OleD, Olel and MGT — which normally glucosylate
macrolide glycoside acceptors as a macrolide inactivation
mechanism — were also recently suggested to attach
glucose to a structurally diverse set of aglycons including
aromatics, coumarins, flavanols and macrolides, on the
basis of a mass spectrometry assay [29]. Among the other
glycosyltransferases capable of using natural product sac-
charides as acceptors, LanG'T'4 was used for the first time,
to elongate the polysaccharide chain of a natural product
beyond the wild-type length [30). LanGT4 and LanGT1
were also recently found to attach two sugars within the
hexasaccharide side-chain of landomycin A [31°].

Several enzymes that catalyze N-glycosylation [32°°] and
C-glycosylation [33°%,34,35] have been discovered
(Figure 3b). IroB, the first C-glycosyltransferase to be
characterized in vitro, was reported last year [35]. Inter-
estingly, UrdGT2, the C-glycosyltransferase involved in
the biosynthesis of urdamycin A, was also able to form an
O-glycosidic linkage, demonstrating unique catalytic flex-
ibility and providing mechanistic insights [33**]. For
N-glycosides, the two genes responsible for attaching
a-L-ristosamine to the staurosporine aglycon — to provide
a unique bridged N-glycosidic structure — were recently
characterized i vivo [32°°}. Specifically, the N-glycosyl-
transferase StaG displayed flexibility with respect to sugar
donors, whereas the P450 oxygenase StaN only formed
the second C-N linkage at the C(5) position with
L-sugars. In a related study, the rebeccamycin N-gluco-
syltransferase (RebG) and downstream glucose-O-
methyluansferase (RebM) were used iz virro and in vivoe
to modify unnatural indolocarbazoles (C Zhang, JS Thor-
son, unpublished data; see Update).

Alternative glycosyitransferase sugar donors

Glycosyltransferases are often promiscuous toward
nucleotide-sugar donors, as exemplified by vancomycin
glycosyltransferase GtfE [36°]. Other examples of glyco-
syltransferases that accept an array of nucleotide-sugar
donors have been reported [14,37], and promiscuous

glycosyltransferases have also been used to glycosylate
avermectins, indolocarbazoles and enediynes (C Zhang,
JS Thorson, unpublished data). In an interesting twist, a
recent report disclosed a glycosyltransferase capable of
using a glycosylated natural product as a sugar donor
source [38°]. Specifically, VinC was demonstrated to
transfer vicenisamine from vicenistatin to several agly-
cons (Figure 3c), a process postulated to proceed via the
intermediacy of TDP-vicenisamine 4. In contrast, there
also exist highly specific glycosyltransferases, such as
LanGT2 from Streptomyces cyanogenus [39] and NovM
from Strepromyces spheroids NCIMB11891 [40]. Cumula-
tively, while glycosyltransferases have proven to be fairly
versatile catalysts, glycosyltransferase directed-evolution
and/or glycosyltransferase structural elucidation (for a
recent example see [41°]) will continue to provide
advancements for engineering of glycosyltransferases
with enhanced properties [37].

In vivo diversification: pathway engineering
or combinatorial biosynthesis

Early natural product glycosylation engineering was
derived from gene-deletion or disruption experiments
designed to elucidate sugar biosynthetic genes by gen-
erating glycosyl-modified shunt metabolites [14]. Solen-
berg and co-workers first described the use of
heterologous glycosyltransferase genes to produce hydrid
glycopeptide antibiotics [42]. Shortly thereafter, Hutch-
inson and co-workers advanced these experiments to the
pathway engineering level when they replaced the native
daunosamine 4-ketosugar reductase gene with an invert-
ing 4-ketosugar reductase gene to ultimately convert the
daunorubicin producer into an epirubicin-producing host
[43]. These landmark experiments paved the way for the
contemporary combinatorial glycosylation applications
highlighted below.

Salas and co-workers recently used combinatorial biosynth-
esis to dissect and reconstitute the entire rebbecamycin
pathway [44°°]. By elegantly combining these genes with
those from staurosporine biosynthesis in a heterologous
host (Szrepromyces albus), over 30 indolocarbazole deriva-
tives were generated, some glycosylated with natural and
unnatural sugars [32°°,44°*]. Expanding upon the extensive
macrolide-glycoside engineering work accomplished by
Liu and co-workers (for their earliest example see [45]),
Hong and co-workers recently engineered deoxysugar
pathways for the generation of novel hybrid macrolide
antibiotics [46]. Specifically, all of the "I'DP-p-desosamine
biosynthesis genes within Sweplomyces venezuelae were
deleted and replaced with genes for the biosynthesis of
TDP-4-keto-6-deoxy-D-glucose and T'DP-p-olivose from
the oleandomycin and urdamycin deoxysugar pathways.
The promiscuous glycosyltransferase DesVII was able to
attach both of these sugars to the macrolactones 10-deox-
ymethylnolide and narbonolide (Figure 4a). Several new
derivatives of the antitumor compound elioramycin were
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Recent glycosyltransferase developments. (a) Alternative hydrophobic substrates for glycosyltransferase VinC from S. halstedii HC-34.
The aglycon naturally transferred by glycosyltransferase VinC is boxed. (b) Examples of natural products bearing C- or N-glycosidic bonds. The
bonds formed are circled, color-coded and labeled with the enzyme involved in their creation. (c) VinC-catalyzed transfer of TDP-vicenisamine

4 from vicenistatin to neovicenistatin. TDP, thymidine diphosphate.
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Examples of combinatorial biosynthesis glycosylation applications. (a) Structures of glycosylated derivatives of 10-deoxymethyinolide (5)
and narbonolide (6) (sugars referred to in text are colored in red). The sugar naturally transferred by DesVII/DesVIll is boxed. Subsequent
hydroxylation by a P450 enzyme (PikC) generates the final products produced by S. venezuelae. (b) Structures of glycosylated derivatives of
8-demethyl-tetracenomycin C (7) and elloramycinone (8) (sugars referred to in text are colored in blue). The sugar naturally transferred by

EImGT is boxed. NDP, nucleotide diphosphate.



also recently generated via combinatorial biosynthesis
using EImGT [47,48}, a flexible glycosyltransferase
used extensively in past years with other aglycons
(Figure 4b). Landomycin E derivatives were also created
via engineering of biosynthetic pathways involving the
glycosyltransferase LndG'T4 [49].

Concluding remarks

The impact of sugar attachments on biological activity

justifies the development of tools that diversify natural
product glycosylation patterns [7°°]. Each individual
diversification tool has inherent advantages and disadvan-
tages, but together these complementary methods provide
access to an incredible array of novel glycosylated natural
products. Combinatorial biosynthesis requires a geneti-
cally amendable host and remains limited to the combina-
tions of existing naturally occurring enzymatic conversions
to produce ‘tailor-made’ or random libraries of natural
product glycosides. Thus, continued elucidation of new
and exotic nucleotide-sugar pathways are critical to
extending the diversity accessible by pathway engineering
{10°,11,15,50°]. As a scalable fermentation-based
approach, combinatorial biosynthesis may ultimately also
provide scalable production of unique metabolites. Recent
attempts to combine the use of ‘unnatural’ sugars in
glycorandomization with the /# vivo advantages of combi-
natorial biosynthesis have been successful [51°], and may
ultimately lead to a single universal glycorandomization
strain able to further complement the level of scalable
diversity accessible via /7 vivo strategies (J Yang, JS Thor-
son, unpublished data). The discovery, characterization,
and engineering of flexible glycosyltransferases will also
remain critical to all enzyme-based glycodiversification
strategies. Finally, pathway engineering can also be used
to diversify natural product aglycons themselves, a facet
of this strategy that, while not discussed here, has the
potential to dramatically increase the number of available
glycosylated natural product derivatives.

Update
The work referred to in the text as (C Zhang, JS Thorson,
unpublished data) is now in press [52].
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Nucleic acid aptamers and enzymes as Sensors

Naveen K Navani and Yingfu Li

The function of nucleic acids has been an endless source of
discovery and invention that has drastically enhanced our
appreciation of DNA and RNA as multifaceted polymers. It is
now widely known that nucleic acids can act as enzymes
(deoxyribozymes and ribozymes) and as receptors (aptamers),
and that these functional nucleic acids (FNAs) can either be
found in nature or isolated from pools of random nucleic acids.
The availability of many natural and artificial FNAs has opened a
new horizon for the development of ‘smart’ molecules for a
variety of chemical and biological applications. This review
provides a snapshot of recent progress in the application of
FNAs as novel sensors for biomolecular detection, drug
discovery and nanotechnology.
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Introduction

Our appreciation of the functional versatility of nucleic
acids has grown over the past two decades. A quick
perusal of the literature reveals that many functional
RNAs, including ribozymes, microRNAs and ribos-
witches, exist in nature [1-3]. Furthermore, many man-
made aptamers, ribozymes, deoxyribozymes and allos-
teric nucleic acid enzymes have been generated via ‘iz
vitro selection’ or ‘SELEX’ (systemic evolution of ligands
by exponential enrichment) techniques [4,5]. The reali-
zation that nucleic acid aptamers and enzymes are highly
useful molecular tools has made the study of functional
nucleic acids a very important part of chemical biology.
"I'he flexibility offered by nucleic acids (stability, ease of
immobilization and susceptibility to various chemical
modifications and labeling) has motivated molecular
scientists worldwide to seek innovative applications for
these species. This review discusses some new advances
that harness the potential of nucleic acid aptamers and
enzymes as sensor molecules. For simplicity, we will refer

to nucleic acid aptamers and enzymes collectively as
‘functional nucleic acids’ or simply ‘FNAs’. Although a
broad definition of FNAs would also include hybridiza-
tion-based probes such as standard molecular beacons and
antisense oligonucleotides, we have chosen to focus on
aptamers and nucleic acid enzymes in the strict sense.

Functional nucleic acids as sensors:

general considerations

FNAs are attractive options for sensing applications.
They can be generated by SELEX to bind diverse targets
including those for which antibodies are difficult to obtain
(such as toxins). Moreover, iz vitro selection can be used
to evolve FNAs under any pre-defined conditions, mak-
ing it possible to design sensors for tasks that cannot be
met with protein receptors. Nucleic acids can also be
easily immobilized to provide a custom-made surface for
specific applications. They have the added advantage of
being able to refold to their native conformation following
one round of sensing, and therefore represent reusable
devices. The change in shape of FNAs upon binding to
their target can be conveniently coupled with various
signaling mechanisms for easy monitoring of molecular
recognition events.

A biosensor is generally defined as an analytical device
consisting of a biologically relevant molecular recognition
element (MRE) integrated to a signal transduction ele-
ment (Figurc 1a). In this review, we will first examine the
use of FNAs for easy detection of proteins, nucleic acids
and metabolites, followed by a discussion on some of the
latest activities involving FNAs as tools in drug discovery
and nanotechnology.

Functional nucleic acids as sensors for
protein detection

Many protein-binding aptamers have been isolated, a
number of which have been exploited for proof-of-con-
cept biosensing applications using various signal trans-
duction mechanisms.

Optical sensing

Optical detection by fluorescence spectroscopy is a pop-
ular method, due largely to the ease with which FNAs can
be fluorescently labelled, the availability of many differ-
ent fluorophores and quenchers, and the inherent cap-
ability for real-time multiplex detection. Several
strategies have been described for converting an existing
aptamer into a fluorescent probe (recently reviewed in
[6]). T'wo frequently adopted methods are the molecular
beacon approach (Figure 1b) [7] and the duplex-to-com-
plex switching approach (Figure 1c) [8]. The former



