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Preface

The propagator approach to a relativistic quantum theory pioneered
in 1949 by Feynman has provided a practical, as well as intuitively
appealing, formulation of quantum electrodynamics and a fertile
approach to a broad class of problems in the theory of elementary
particles. The entire renormalization program, basic to the present
confidence of theorists in the predictions of quantum electrodynamies,
is in fact dependent on a Feynman graph analysis, as is also con-
siderable progress in the proofs of analytic properties required to write
dispersion relations. Indeed, one may go so far as to adopt the
extreme view that the set of all Feynman graphs 7s the theory.
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Preface

We do not advocate this view in this book nor in its companion
volume, “Relativistic Quantum Mechanics,” nor indeed do we advocate
any single view to the exclusion of others. The unsatisfactory status
of present-day elementary particle theory does not allow one such a
luxury. In particular, we do not wish to minimize the importance of
the progress achieved in formal quantum field theory nor the con-
siderable understanding of low-energy meson-nucleon processes given
by dispersion theory. However, we give first emphasis to the develop-
ment of the Feynman rules, proceeding directly from a particle wave
equation for the Dirac electron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach were the
primary motivation for undertaking these books:

1. The Feynman graphs and rules of calculation summarize
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the
theory in terms of graphs may imply perturbation theory, use of
graphical methods in the many-body problem shows that this formal-
ism is flexible enough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas).

2. Some modification of the Feynman rules of calculation may
well outlive the elaborate mathematical structure of local canonical
quantum field theory, based as it is on such idealizations as fields
defined at points in space-time. Therefore, let us develop these rules
first, independently of the field theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.

3. Such a development, more direct and less formal—if less com-
pelling—than a deductive field theoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynman
graphs into the bag of tricks of a much larger community of physicists
than the specialized narrow one of second quantized theorists. In
particular, we have in mind our experimental colleagues and studenty
interested in particle physics. We believe this would be a healthy
development. ‘

Our original idea of one book has grown in time to two volumes.
In the first book, “Relativistic Quantum Mechanics,” we develop a

- propagator theory of Dirac particles, photons, and Klein-Gordon

mesons and perform a series of calculations designed to illustrate
various useful techniques and concepts in electromagnetic, weak, and
strong interactions. These include defining and implementing the
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renormalization program and evaluating effects of radiative correc-
tions, such as the Lamb shift, in low-order calculations. The necessary
background for this book is provided by a course in nonrelativistic
quantum mechanics at the general level of Schiff’s text “Quantum
Mechanics.” '

In the second book, “Relativistic Quantum Fields,” we develop
canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LSZ reduction
technique, return to the Feynman graph expansion. The perturbation
expansion of the scattering amplitude constructed by canonical field
theory is shown to be identical with the Feynman rules in the first
book. With further graph analysis we study analyticity properties of
Feynman amplitudes to arbitrary orders in the coupling parameter
and illustrate dispersion relation methods. Finally, we prove the
finiteness of renormalized quantum electrodynamics to each order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The development of
action principles and a formulation of quantum field theory from a
variational approach, spearheaded largely by Schwinger, are on the
whole ignored. We refer to action variations only in search of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely S-matrix
approach, divorced from field theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimally. A
formulation of a quantum field theory for massive vector mesons is not
given—nor is a formulation of any quantum field theory with deriva-
tive couplings. Finally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excellent books
or monographs is to be found the remedy for one or more of these
deficiencies:

Schweber, S.: “An Introduction to Relativistic Quantum Field Theory,” New
York, Harper & Row, Publishers, Inc., 1961.

Jauch, J. M., and F. Rohrlich: “The Theory of Photons and Electrons,” Cam-
bridge, Mass., Addison-Wesley Publishing Company, Inc., 1955.

Bogoliubov, N. N., and D. V. Shirkov: ‘Introduction to the Theory of Quantized
Fields,” New York, Interscience Publishers, Inc., 1959.

Akhiezer, A., and V. B. Bereztetski: “Quantum Electrodynamics,”” 2d ed., New
York, John Wiley & Sons, Inc., 1963.



Preface

Umezawa, H.: “Quantum Field Theory,” Amsterdam, North Holland Publishing
Company, 1956.

Hamilton, J.: “Theory of Elementary Particles,”” London, Oxford University
Press, 1959.

Mandl, F.: “Introduction to Quantum Field Theory,”” New York, Interscience
Publishers, Inc., 1960.

Roman, P.: “Theory of Elementary Particles,”” Amsterdam, North Holland
Publishing Company, 1960.

Wentzel, G.: “Quantum Theory of Field,”” New York, Interscience Publishers,
Inc., 1949.

Schwinger, J.: “Quantum Electrodynamics,” New York, Dover Publications,
Inc., 1958.

Feynman, R. P.: “Quantum Electrodynamics,”” New York, W. A. Benjamin,
Inc., 1962.

Klein, L. (ed.): “Dispersion Relations and the Abstract Approach to Field Theory,”’
New York, Gordon and Breach, Science Publishers, Inc., 1961

Screaton, G. R. (ed.): ‘“Dispersion Relations; Scottish Universities Summer
School,” New York, Interscience Publishers, Inc., 1961.

Chew, G. F.: “S-Matrix Theory of Strong Interactions,”” New York, W. A.
Benjamin, Inc., 1962.

In conclusion, we owe thanks to the many students and colleagues
who have been invaluable critics and sounding boards as our books
evolved from lectures into chapters, to Prof. Leonard I. Schiff for
important initial encouragement and support to undertake the writing
of these books, and to Ellen Mann and Rosemarie Stampfel far
marvelously cooperative secretarial help.

James D. Bjorken
Sidney D. Drell
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.nfuitive and correspondence arguments were used in ‘‘Relavivistic
Quantum Mechanics” in developing the propagator approach and
giving practical rules for calculating, in perturbation theory, inter-
actions of relativistic particles. We now turn to a systematic deriva-
tion of these rules from the formalism of quantized fields. Our motiva-
tion is first to ‘““patch up the holes” in our arguments in the propagator
approach and then to develop a formalism which might be applied to
problems for which perturbation theory is not adequate, such as
processes involving strongly coupled mesons and nucleons.

Our approach is best illustrated by the electromagnetic field.
The potentials A*(z) satisfy the Maxwell wave equations and may be
considered as describing a dynamical system with an infinite number
of degrees of freedom. By this we mean that A#(z) at each point of
space may be considered an independent generalized coordinate. To
make the transition from classical to quantum theory, we must, accord-
ing to the general principles proclaimed in Chap. 1,! elevate coordi-
nates and their conjugate momenta to operators in the Hilbert spac:
of possible physical states and impose quantum conditions upon them.
This is the canonical quantization procedure. It is a straightforward
extension to field functions, which obey diderential wave equations
derivable from a lagrangian, of the quu.ntization procedure of non-
relativistic mechanics. When it is Jdone, there emerges a particle
interpretation of the electromagretic field—in the sense of Bohr's
principle of complementarity.

If photons emerge in such a natural way from the quantization
of the Maxwell field, one is led to ask whether other particles whose
existence is observed in nature are also related to force fields by the
same quantization procedure. On this basis Yukawa predicted the
existence of the  meson from knowledge of the existence of nuclear
forces. Conversely, it is natural from this point of view to associate
with each kind of observed particle in nature a field ¢(x) which satisfies
an assumed wave equation. A particle interpretation of the field ¢ is
then obtained when we carry through the canonical quantization
program.

In such a program we must first define the momenta =(z) conju-
gate to the field coordinates ¢(z). We do this in terms of a lagrangia ,
from which the wave equation for each field ¢(z) as well as the conju-
gate momenta are derivable. Applying the canonical quantization
procedure with the commutator condition of Chap. 1, we obtain field
quanta, such as photons, which obey Bose statistics. In order to

1 References to Chaps. 1 to 10 or parts thereof are references to the companion
volume, “Relativistic Quantum Mechanics.”

2
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11.1

describe Fermi particles which obey an exclusion principie with a simi-
lar quantum field formalism, it turns out to be necessary only to replace
the quantum commutator conditions by anticommutator relations.

In this way a unified formalism which provides a basis for the
description of both kinds of particles can be constructed. An addi-
tional dttractive feature of the lagrangian approach which will be
seen shortly is that it leads directly to the conservation laws.

Implications of a Description in Terms of Local Fields

Before continuing and exploring the consequences of applying the
quantization procedure to classical fields which satisfy wave equations,
it is perhaps worthwhile to discuss the implications of such a program.
The first is that we are led to a theory with differential wave propaga-
tion. The field functions are continuous functions of continuous
parameters x and ¢, and the changes in the fields at a point x are deter-
mined by properties of the fields infinitesimally close to the point x.

For most wave fields (for example, sound waves and the vibrations
of strings and membranes) such a description is an idealization which
is valid for distances larger thar the characteristic length which meas-
ures the granularity of the medium. For smaller distances these
theories are modified in a profound way.

The electromagnetic field is a notable exception. Indeed, until
the special theory of relativity obviated the necessity of a mechanistic
interpretation, physicists made great efforts to discover evidence for
such a mechanical description of the radiation field. After the require-
ment of an “‘ether” which propagates light waves had been abandoned,
there was considerably less difficulty in accepting this same idea when
the observed wave properties of the electron suggested the introduction
of a new field ¥(z). Indeed there is no evidence of an ether which
underlies the electron wave ¥(x,f). However, it is a gross and pro-
found extrapolation of present experimental knowledge to assume that
a wave description successful at “large” distances (that is, atomic
lengths =~ 10—% cm) may be extended to distances an indefinite number
of orders of magnitude smaller (for example, to less than nuclear
lengths = 10—1% ¢m).

In the relativistic theory, we have seen that the assumption that
the field description is correct in arbitrarily small space-time intervals
has led—in perturbation theory—to divergent expressions for the

-electron self-energy and the “bare charge.” Renormalization theory

~ has sidestepped these divergence difficulties, which may be indicative
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of the failure of the perturbation expansion. However, it is widely
felt that the divergences are symptomatic of & chronic disorder in the
small-distance behavior of the theory.

We might then ask why local field theories, that is, theories of
fields which can be deseribed by differential laws of wave propagation,
have been so extensively used and accepted. There are several rea-
sons, including the important one that with their aid a significant
region of agreement with observations has been found, examples of
which have already appeared in the discussions of the companion
volume. But the foremost reason is brutally simple: there exists no
convineing form of a theory which avoids differential field equations.

A theory of the interaction of relativistic particles is necessarily
of great mathematical complexity. Because of the existence of crea-
tion and annihilation processes it is at once a theory of the many-body
problem. At the present time one knows how to develop only approxi-
mate solutions to this problem, and therefore the predictions of any
such theory are incomplete and at best somewhat ambiguous.

Faced with this situation, the most reasonable course to steer
in constructing theories is to retain the general principles which have
worked before in a more restricted domain. In this case, this includes
the prescription for quantization which strongly involves the existence
of a hamiltonian H. However, since H generates infinitesimal time
displacements according to the Schrédinger equation, we are led to a
description with differential development in time. Lorentz invariance
then requires a differential development in space as well. A hamil-
tonian may well not exist for a nonlocal ‘“‘granular” theory; if it does
not, the link connecting us with the quantization methods of non-
relativistic theories is broken.

If we simply retain the notion of a Lorentz-invariant microscopic
description in terms of continuous coordinates x and ¢, we expect that
the influence of interactions should not propagate through space-time
with velocity faster than ¢. This notion of “microscopic causality”
strongly forces us into the field concept. Even if there is a granularity
at small distances, if we are to retain microcausality the influence
of one “granule’” upon the next must be retarded; the most natural way
to describe this is with additional fields. The problem thus becomes
more complicated, without corresponding gain in understanding.

There is no concrete experimental evidence of a granularity at
small distances.! There is likewise nothing but positive evidence that

1In quantum electrodynamics there exists an agreement between theory and
experiment to very great precision in both low- and high-energy processes. See, for
example, R. P. Feynman, Rept. Solvay Congr., Brussels, Interscience Publishers,
Inc., New York, 1961
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special relativity is correct in the high-energy domain, and further-
more, there is, if anything, positive evidence! that the notion of micro-
scopic causality is a correct hypothesis: Since there exists no alterna-
tive theory which is any more convincing, we shall hereafter restrict
ourselves to the formalism of local, causal fields. It is undoubtedly
true that a modified theory must have local field theory as an appro-
priate large-distance approximation or correspondence. However, we
again emphasize that the formalism we develop may well describe only
the large-distance limit (that is, distances > 10~ cm) of a physical
world of considerably different submicroscopic properties.

11.2 The Canonical Formalism and Quantization Procedure
for Particles

To preface our development, we recall the familiar path to the quanti-
zation of a classical dynamical system in particle mechanics. For
purposes of illustration consider the one-dimensional motion of a parti-
cle in a conservative force field. We let ¢ be the (generalized) coordi-
nate of the particle, § = dq/dt the velocity, and L(q,q) the lagrangian.
According to Hamilton’s principle, the dynamics of the particle is
determined by the condition

7 =5 [ Lgdd=0 (11.1)

Equation (11.1) states that the actual physical path ¢(f) which the
particle follows in traversing the interval from (gi,¢;) to (gs,f2) is that
along which the action J is stationary. Thus small variations from
this path, ¢(t) — ¢q(f) + 6¢(f), as shown in Fig. 11.1, leave the action
unchanged to first order in the variation.

Hamilton’s principle leads directly to the Euler-Lagrange equa-
tions of motion?

2 S (11.2)

In order to carry out the formal quantization of this equation, we
rewrite it in hamiltonian form. We do so by defining the momentum
p conjugate to g,

e (11.3)

1'We mean by this the experimental verification of the dispersion relations for
forward pion-nucleon scattering, to be discussed in Chap. 18.

? Cf. H. Goldstein, “Classical Mechanics,”” Addison-Wesley Publishing Com-
pany, Inc., Reading, Mass., 1950. The form of (11.2) applies for no higher than
the first derivative of the coordinates appearing in L.
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and introducing the hamiltonian by the Legendre transformation

H(p,q) = p¢ — L(g,9) (11.4)
In terms of H, the equation of motion (11.2) becomes

oH . oH .
{H,q}lps = B and  {H,ples = — g =P (11.5)

where { }pp means a Poisson bracket.

To quantize (11.5), we let ¢ become a hermitian operator in a
Hilbert space and replace p by —z d/dq so that the conjugate momen-
tum and coordinate satisfy a commutator relation

[pg] = —1 (11.6)

corresponding to the classical Poisson bracket {p,g}es = 1. With
this definition, p is also hermitian. The dynamics of the particle is
contained in the Schrodinger equation

Hip,g)() = i 200 (1L.7)

where ¥ is the wave function, or state vector, in the Hilbert space.
If we specify the initial state ¥ at an arbitrary time, say ¢ = 0, the
Schrodinger equation determines the state and hence physical expecta—
tion values at all future times.

This formulation of the time development of the motion of the
particle, with the time dependence carried in ¥ while the operators
p and ¢ are not time-dependent, is known as the Schrodinger picture.
Alternatively, we may express the time development of the motion in
a different language in which the operators p(f) and ¢(f) carry the
time dependence instead of the state vectors ¥. This is known as the



